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Abstract—Choice of load signature or feature space is one of
the most fundamental design choices for various characteriza-
tions of non-intrusive load monitoring or energy disaggregation
problem (classification, pattern recognition). This paper evaluates
appliance load signatures based on VI-trajectory - the mutual
locus of canonical instantaneous voltage and current waveforms -
for overall precision and robustness of prediction in DE-optimized
classifiers used for disaggregation of household energy use into
constituent appliance signatures. Benchmark dataset employed
for evaluation is REDD (reference energy disaggregation dataset
- MIT CSAIL).

Index Terms—Non-intrusive Load Monitoring; Smart grids;
energy disaggregation; REDD

I. INTRODUCTION

Monitoring of end user device loads can have significant
benefit in energy conservation applications. Savings of up
to 20% have been reported in household where total energy
usage of the household is visualized in realtime for the users.
Monitoring of devices has even more application in suggestive
demand side management, integration of distributed generation
and renewable energy and in micro-grids operations and in
reactive demand response. To monitor end user device loads,
the state of the art is to install sensors on the devices and
collect the data through some wireless means -usually using
ZigBee protocol. However, this not only is costly but also has
security and privacy issues.

Non-intrusive load monitoring (NILM) provides a viable
solution[?]. NILM identifies loads of individual devices with-
out intrusive sensors placed on the user premises and in most
cases disaggregated the total load of the house into load
components of individual devices. Since automated metering
infrastructure installations are already underway in many re-
gions, the cost of such monitoring will be minimal.

Various algorithms have been proposed to identify and
monitor loads of individual devices [citation for some pre
2009 survey]. However, recent studies of Lian and colleagues
and Lam and colleagues on load signature curves and their
relationship with device usage has provided a new avenue
for research. This taxonomy of loads based on load signature
curves has been used for load disaggregation by various
researchers and has been shown as a good way for load
monitoring. In this paper we apply this taxonomy to build
a non-intrusive load monitoring infrastructure.

In this paper we evaluate the effectiveness of a two-
dimensional load signature defined by the mutual locus of in-
stantaneous voltage and current waveforms (referred to as the
Vl-trajectory in introductory work [3]). Our goal is precision
and robustness of prediction in non-intrusive load monitoring
applications. For the scope of this study NILM is characterized
as a multi-class classification problem.

To solve this multi-class classification problem we have
used a hybrid EDE-NN algorithm. This EDE-NN algorithm
applies enhanced differential evolution (EDE) algorithm for
parameter search to optimize the neural network classification
framework. The algorithm has previously been used for short
term load forecasting of micro-grids however, to our knowl-
edge we are the first one to apply such a hybrid system for
this problem.

We have evaluated this algorithm on Reference Energy
Disaggregation Data Set (REDD) collected by computer sci-
ence and artificial intelligence (CSAIL) laboratory at MIT,
USA. This data consists of whole-home and device specific
electricity consumption data for 119 days for a 10 houses.
For each monitored house, REDD provides the whole home
electricity signal at a frequency of15kHz and up to 20 plug-
level monitors in the home, recorded at 1 Hz. Since REDD
to date is the largest publicly available data set of such kind,
we use this data as a benchmark for evaluation of our NILM
application.

Our results show that the VI-trajectory has a marked better
prediction accuracy of wave-shape features (WS) derived from
VI-trajectory compared to other benchmark load signatures.
We also show that the hybrid EDE-NN classifier performs
better than the state of the art algorithms for NILM specifically
those applied to REDD.

The paper is organized in the following way: Section II
details these various design choices. Section III presents the
numerical results illustrating the superior prediction accuracy
of wave-shape features (WS) derived from VI-trajectory com-
pared to other benchmark load signatures.

II. PROPOSED STRATEGY

Structure of the proposed setup is depicted below, followed
by an evaluation of various design choices.



A. Review of Various Design Choices for Load Signature (LS)

Choice of feature space has implications on generalization
of classifier training, performance of disaggregation. Research
in [3] assesses the relative feasibility of traditional power
metrics, metrics based on wave-shape and most significant
orthonormal vectors of current waveform for establishing
taxonomy of electrical appliance signatures. Traditional power
metrics like real and reactive RMS power consumed (P, Q),
total odd and even harmonic distortion of current (ToHD,
TeHD) have concrete engineering meanings that detail op-
erating characteristics of the appliance in question; however,
they often allow for appliances of very different nature (for
instance, motor-driven, power electronic and resistive) to be
identified within the same appliance class when chosen as the
feature space for classification. An alternative choice would
be to apply singular value decomposition (SVD) on a matrix
containing cycle-by-cycle current waveform and consider the
most significant orthonormal vectors. Extracted vectors are
characteristic of current wave-shape; however, they do have
obvious engineering meanings. Metrics based on shape of V-I
trajectory (mutual locus of voltage and current waveforms)
allow for appliances of similar operating characteristics to
be grouped closer, hence less fuzziness in dataset, should
allow the training algorithm to generalize better to unknown
examples and the disaggregation to improve overall accuracy.
Chosen wave-shape metrics for this study are Looping Di-
rection, Area Enclosed, Non-linearity of Mean Curve, Self
Intersections and Slope of Middle Segment Looping Direction,
Area Enclosed, Non-linearity of Mean Curve, Self Intersec-
tions and Slope of Middle Segment[3].

B. Training Structures, Disaggregation Framework

Choice of training structure is a function of the char-
acterization of the learning problem subscribed to and the
feature space used. With discrete features calculated before-
hand - traditional power metrics or wave-shape features -
linear search with Euclidean distance would suffice. Treating
the disaggregation as a pattern recognition problem however,
we can use an artificial neural network to learn complex
features of the current wave (CW) shape or of instantaneous
admittance waveform (IAW) [2]. Even with features calculated
before-hand, a single neural network can be used to perform
multi-class classification, so as to derive a single complex,
non-linear hypothesis function that works as a composite
classifier. A generalized NALM system usually realizes a
parallel execution of all of these methods and uses committee
decision methods to achieve the best of performance among
all deployed algorithms; this provably results in better overall
accuracy compared to single algorithm methods [6]. Compu-
tation overhead incurred by such a framework might imply
limitations on realization, deployment and service period;
for instance, a minimal, scalable realization for event-based
operation would necessarily exploit software and preferably
hardware parallelization and provisions would be needed to
account for near simultaneous switching events.

C. Performance Optimization

Following passage reviews the algorithm for parameter
search ([4], [11]), with special reference to DE and EDE.
Differential Evolution (DE) is a heuristic, population-based
global search strategy that, offers more relative certainty and
efficiency of convergence for minimization problem for non-
linear continuous space functions [5]. EDE is an enhanced
variant of DE proposed in [4] whereby instead of an empirical
recombination rate (RR) for populations of system parameters,
a new fitness function is described that weighs the fitness of
mutant population (f) relative to fitness of original population,
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Urepresents the mutant population of training parameters,
X, the original population, OF, the objective function corre-
sponding to a set of ANN training parameters. In large-scale
NALM systems with heavily parallelized implementations of
various training structures, the objective function represented
by OF(X) can be generalized as follows:

N
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such that OF}(X) represents the objective function cor-
responding to classifiers for one of the various appliances
or classes of appliances under consideration. The constants
ay, represent the relative weights of various OF's such that
choice of these constants would reconcile the minimization of
individual OF's for the composite classifier. These constants
introduce additional flexibility for gauging the constraints on
sensitivity of disaggregation towards a subset of appliances.

A brief summary of the overall proposed strategy is de-
scribed as follows. Populations of system variables (number
of hidden layer neurons in case of ANN, recombination rate
in case of DE/GA or velocity constant in EA) or "genes’ for
kth trainer and " iteration, X! (k),k = 1,2,...,N are
randomly initialized in the beginning, a total of M individuals
(v =1,2,,M) and G genes per individual for each trainer
(w=1,2,...,G). Assuming s are known, each individual
in the mutant population U}, (k) is determined by a linear
combination of genes from three randomly chosen individuals
in the original population.

U:;w(k) = X;w(k) + F x (X;w(k) - X(l:w(k))
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Fitness functions of original and mutant populations are
determined from (1) and (2). Each gene in X ! (k) is de-
termined as follows:
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if rand < Fitness Function (U)
if rand > Fitness Function (U))



The process is continued until maximum number of itera-
tions is reached [11]. In case of DE, an empirical combination
rate (RR) replaces the fitness function described; rest of the
strategy stays the same. EDE thus has a self-regulating RR.
In a composite classifier, one choice is that performance
optimization of each class can be carried out in parallelized
fashion (requiring N replicas of above algorithm) such that for
selected values of &,
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An alternative choice would be to use a single objective
function following the above rule; simplest instances would be
for selected values of k, X |OF — %| or Xy, (OFk — %)2 R
depending on the penalty required as error grows and whether
OF can adapt to degree of convergence of parameters like
with the basic case of max O F},.. More sophisticated objective
functions that allow for both dynamic adaptation and selective
minimization can be constructed.

III. ASSESSMENT

A. Evaluation Framework



