
On the Use of Linear Programming in
Optimizing Energy Costs

Fahad Javed1 and Naveed Arshad1

LUMS School of Science and Engineering Lahore, Pakistan
fahadjaved@lums.edu.pk naveedarshad@lums.edu.pk

Abstract. Efficient energy consumption in large sets of electric devices
is a complex problem since it requires a balance between many compet-
ing factors. Presently, self-optimization techniques work expeditiously on
small and relatively less complex problems. However, these techniques
are not shown to be scalable on large and complex problems. In this
paper we have used linear programming to optimize the use of energy
in a typical environment that consists of large number of devices. Our
initial results show that LP is fast, predictable and scalable. Moreover,
we have also observed that modeling in LP is quite simple as compared
to other self-optimization techniques.

1 Introduction

Self-optimization, the goal of enabling a system to autonomically optimize itself,
necessitates a methodology that is able to handle input domain for any given
system. This requires an ability to handle a hyper-dimensional variable space
involving hundreds of variables with complex relationships.

Some of the recent approaches for self-optimization problems have used tradi-
tional methods such as control theory [5] [3] to optimize a given system. However
these solutions are limited as it has not been shown that these techniques can
scale to hyper-dimensional variable space or handle the complex relationships
appropriately.

In contrast our interest centers around the problems of self-optimization for
large and complex systems involving hyper-dimensional input and output vari-
able space with complex relationships. We approach this problem using linear
programming to find the extremum of the system.

In this approach we have used linear programming to optimize the power
consumption of a heterogenous system of machines under variable demand. Our
initial results have shown upto 80% savings.

Our contributions in this paper are:

1. A scalable methodology for self-optimizing a system which involves hyper-
dimensional variable input and output space as long as the system is linear
or can be interpolated to linear domain.

2. A unique time-variate modeling schema for planning with linear program-
ming.

3. Identification of a class of problems where optimization techniques such as
linear programming could be used.



2 Related work for Cost Optimization

Efficient energy consumption is a critical issue that has become the focus of
academia, industry and general public in recent times. This has roots in eco-
logical as well as cost management issues. Electric consumption for commercial
entities such as cyber-cafes, server farms and other facilities where a consider-
able number of computers are installed face problem of optimization of cost of
operations.

A typical cost of operations in a lab has two mostly conflicting components.
The first component is the energy cost incurred by running the machines. The
second component is the cost of repairs. Both these costs have a weekly inverse
relationship. As it is observed that frequent restarts of machines is one of the
most common cause for breakages in machines. Labs, including managed by our
own IT department, would rather keep the machines ”on” rather than pay for
costly breakages. The machines are scheduled to go to ”hibernate”mode if ma-
chine is the machine is not used for a given period of time. However ”hibernate”
cost is usually around 20% of a typical ”on” cost. There is no methodology avail-
able that balances the growing cost due to hibernate with the cost of breakages
for a more robust systrm.

Optimizing a system consisting of homogenous machines with or without
indistinguishable power consumption profiles has been proposed in previous work
[4], [3] [5] . But our target system, computer labs usually employ computers with
varying configurations, demands and power profiles. Therefore we need a more
robust approach that is able to handle the extra requirements.

Our technique for optimization is a balance between [1] and [2], [4]. Almeida
and colleagues provides a heuristics based mathematical technique which is scal-
able but does not guarantee an optimum solution and is extremely complex to
grasp[1]. In contrast Nathuji and colleagues used a simplistic greedy algorithm
to balance power in a heterogeneous data-center environment[4]. This was pos-
sible due to the nature of problem which allowed mapping of input to a single
variable domain thereby making greedy algorithm a possibility. Although Femal
and Freeh used LP to derive an optimal solution for boosting performance[2], it
can be shown that a greedy technique would have been more suitable to find the
solution.

We felt that a sizeable number of problems in the autonomic computing
domain can be handled by a far less complex system than [1] and with a much
better guarantee. At the same time not all problems can be mapped to an input
domain which is solvable through greedy algorithms. Our optimization technique
targets the class of problems that lies between these two extremes.

3 Approach

Our approach to reduce the operation costs of an environment which consists of
large number of machines is based on a hypothesis. This hypothesis states that
although a restart cycle has a cost component, and a ”hibernate” and ”on” also
has a cost component. However, there is a an optimum point which balances



these two competing cost components. In our approach we take this optimum
point to be the reduction of the total cost of operations of the environment.

To model such a system our input domain includes various classes of machines
with their demands and costs. Our output domain is the number of machines in
”on” ”off” or ”hibernate” state for each time period. We applied linear program-
ming (LP) to our problem to find the optimum utilization of such an environment
based on the reduction of the total cost of operations.

3.1 Modeling in Linear Programming

An LP model requires a series of linear equations constraining the problem
domain and an optimization function. Our cost function defines the optimization
function and the constraint equations are discussed shortly.

Our system consists of various classes of machines. Each machine has states
and each state carries a cost per unit time. Our explicit objective is to reduce
cost but implicitly we require a solution that meets our demands for each time
period and also satisfies the relational constraints such as the demands for a
particular class of machines. The variables for our model are given in figure 1.

ONitj i type of machine on at time j
OFFitj i type of machine off at time j
HIBERNATEitj i type of machine hibernating

at time j
SWITCHONitj i type of machine to be

switched on at time j

Fig. 1. LP Variables

We will achieve optimization by reducing the two cost components over a
period of time. LP selects the least cost combination of machines which will
satisfy the requirements (equation 1). The decision that we are interested in is
which machines to shut down to minimize the cost. The requirement here are
the demands for each usage class for a specific time period (equation 3). We are
bounded by the number of machines for each class (equation 2). We put it all
together, the ”on”, ”off”, ”hibernate” and ”switch-on” costs, in our optimization
function as given in figure 2 equation 1. To complete the model we added the
non-negativity constraints for all the variables (not shown in the figure). This is
because in our system a negative on or off machine does not make sense .

4 Evaluation

We ran several simulations using equations in figure 2 on data collected from one
of our labs and compared it with simulated cost of other techniques available.
We ran our tests on a week’s data. We considered a window of 24 hours and
compared our LP results with the existing setup. In our tests we assumed that
we will have knowledge of usage for each class priori.

4.1 EnergySaver++

Our application, EnergySaver++, uses LP to provide a plan for the number of
machines to shutdown or hibernate in each 1 hour period over a period of 24



z =
∑
i,j

ONitj .costOni+
∑
i,j

HIBERNATEitj .costHibernatei+
∑
i,j

SWITCHONitj .costRestarti

(1)

∀i,j{ONitj + HIBERNATEitj + OFFitj = supplyi} (2)

∀k,j{
∑

i:Xi⊂Si

ONitj ≥ demandktj} (3)

∀i∀j{ONitj+1 +HIBERNATEitj+1−ONitj −HIBERNATEitj ≤ SWITCHONitj}
(4)

Fig. 2. LP Equations

Fig. 3. Demand pattern

hours. We classify the machines in our lab according to their power consumption
profile and configuration of each system.

The power consumption profile is derived by calculating the power needed
for the CPU, monitor and periphery devices for the three states concerned,
namely: On, Hibernate and the breakage cost due to restart. Breakage cost of
restart is calculated by finding the average cost of repair for machines which
were diagnosed with power fluctuation related faults divided by number of times
an average machine was rebooted in the past one year.

Our second classification criterions, for configuration classes, are the special
software or hardware installation on machines for which students make special
demands. Due to various issues some facilities are available only at specific num-
ber of machines. We classified machines based on these special configurations
and measured the usage of the ”special” resource for each system configuration
class.

Using the above two classification methods, we define our set of general
classes X for LP. X is defined as partitions of U created by C and intersections
of C and S. Here U is the set of all the machines, {Ci ⊂ C : Ci is a consumption
class} and {Si ⊂ S : Si is a usage class} Consumption classes are disjoint classes
as a computing can belong to only a single profile. Whereas usage classes can
overlap one or more consumption classes.

In our initial test-bed consists of 120 machines. There were 6 different power
consumption profiles for those machines. We identified 3 configuration classes.
For LP model, with overlapping of consumption classes, we had 10 (X) classes.



We collected historical data to predict the workload. Table 1 defines the cost for
each class for each of the 6 consumption profile classifications.

We collected the usage of systems by noting the logon/ logoff times for ma-
chines. A second script noted if a special resource was used in the last hour. We
observed that the usage of machines was highly cyclic. In-fact the usage repeats
itself after 7 days. We predicted demand for the 24 hour period for each time
period as shown in Fig 3. The global demand is for a general purpose machines
where as demands S1, S2 and S3 corresponds to the demand for Matlab, SPSS,
and scanner respectively for each time period.

We evaluated our system by comparing the cost of operations incurred by
our system with the cost incurred by the three plans provided by OS vendors.
Namely: Keep machines always in on state or Hibernate machines after x minutes
(x < 60) or Switch-off machine if machine has been in hibernate state for 1 hour.

We used data for 7 days of a week and applied LP based planning. We
simulated the three plans that are used for optimizing power consumption on
the same 7 day dataset. Table 2 shows the result of the cost of operations that
these systems incurred given the same usage pattern. The table also shows, in
savings column, the percentage savings that our LP based system attains in
comparison.

We observed upto 80% savings in comparison to an always on policy for
weekend days (day 6 & 7) and upto 43.3% and 53.4% savings for hibernating
plan and switching off after one hour of hibernate plans, respectively.

For weekdays(day 1 - 5), we saw a maximum of 62% savings for always on
and up to 19% and 32% savings for hibernating plan and switching off after one
hour of hibernate plans respectively.

Since our lab was using policy where the machines switched to hibernate,
our net savings were 2.43 units or 24%. This means that we are able to slash our
costs by 1/4th by using an LP based planner.

Our reason for using LP was scalability. To test our claim that LP is scalable,
we evaluated our application against a variety of input parameters. We generated
random data to set up scenarios. Our variation in data can come from change
in number of machine and change in the classes of machines. These parameters
and their results are shown in table 3. It could have been inferred from the LP
equations themselves that a change in the number of machines only will not
effect the running time. We can see this in our simulations as well. The time for
100, 1000, and 10000 machines is nearly same for the different classes.

State On Hibernate Restart

Class C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

Cost 10 5 10 15 20 20 2 1 4 2 3 2 10 16 18 18 10 17

Table 1. Cost function of machine classification



Table 2. Daily cost of operations for alternative methods and percentage saving in
comparison to LP method

Classes 10 50 100

Machines 100 1000 10000 100 1000 10000 100 1000 10000

Running Time 0.23 0.12 0.13 0.5 0.53 0.51 1.48 1.38 1.38

Table 3. Scalability results of LP (time in seconds)

5 Future work and conclusion

In this paper we have provided the groundwork for a possible future direction in
self-optimization. We have described the issues with using traditional methods
for self-optimization.

We have provided an alternative approach for self-optimization by using
conventional mathematical techniques. As a sample we have described a hyper-
dimensional problem, EnergySaver++, and applied linear programming to derive
a solution which is optimal and is derived in polynomial time.

Our future direction is two pronged. First we will build on this work to
formulate a better way to handle prediction errors and current load transitions
by using some iterative methods on LP. Second, we will try to provide a solution
for non-linear time variant system planning.

Our targeted system for these future direction is to manage the power sup-
ply at the metropolitan level which will optimize the power consumption while
maintaining a basic quality level for the users.

References

1. J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and M. Trubian. Resource
management in the autonomic service-oriented architecture. Autonomic Computing,
2006. ICAC ’06. IEEE International Conference on, pages 84–92, 13-16 June 2006.

2. M.E. Femal and V.W. Freeh. Boosting data center performance through non-
uniform power allocation. Autonomic Computing, 2005. ICAC 2005. Proceedings.
Second International Conference on, pages 250–261, 13-16 June 2005.

3. Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. Server-level power control.
Autonomic Computing, 2007. ICAC ’07. Fourth International Conference on, pages
4–4, 11-15 June 2007.

4. Ripal Nathuji, Canturk Isci, and Eugene Gorbatov. Exploiting platform heterogene-
ity for power efficient data centers. Autonomic Computing, 2007. ICAC ’07. Fourth
International Conference on, pages 5–5, 11-15 June 2007.

5. Mianyu Wang, N. Kandasamy, A. Guez, and Moshe Kam. Adaptive performance
control of computing systems via distributed cooperative control: Application to
power management in computing clusters. Autonomic Computing, 2006. ICAC ’06.
IEEE International Conference on, pages 165–174, 13-16 June 2006.


