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Abstract—Demand side management (DSM) has the potential
to significantly improve smart grid operations by reducing the
peak to average ratio. Proposed DSM schemes are reducing peak
load by as much as 30% which can translate to significant
cost savings and reduction in green house emissions. But for
realistic deployment of this system in the grids there are two very
important aspects which need to be considered: Scalability and
user acceptability. Since the DSM algorithm is required to control
potentially hundreds of thousands of devices, the technique has
to be scalable and tractable for such numbers. On the other hand
DSM will effect the life style of the consumer and the affect of
the system should be as less disruptive as possible. The various
techniques proposed in literature attempt to first reduce the cost
and then attempt to resolve one of the two aspects. The result
is that the techniques are either scalable or are only considerate
of the deadlines of the consumers. To this end in this paper
we present a unique combination of two solution strategies and
propose Deli2P , a user centric and scalable solution. In essence
we provide to the consumer a deadline centric interface. The
deadlines solutions are generally not scalable. But instead of
solving this problem as a scheduling for deadline problem we
transform it to a priority based mechanism which is scalable but
for the user interface and acceptability is not ideal. Our results
show that with this scheme we can reduce the peak load to
the priority based mechanism without violating the consumers’
deadlines.

Index Terms—Smart grids; Demand Side Management, Peak
reduction, demand elasticity.

I. INTRODUCTION

The continuous increase in electricity demand and the
shrinking resources of energy has resulted in scarcity of
electricity in the existing setup. In such a scenario conserving
and optimally consuming the existing resources has gained
paramount importance. One of the major ways for efficient
energy management is demand side management (DSM) [9].
Coupling DSM with the future smart grids technologies there-
fore is being seen as the major resource for the future smart
grids [15]. The goal of these future DSM systems is to man-
age the domestic consumer’s load for a more environmental
and economic efficient energy generation scheduling. This is
usually achieved by offloading the electric consumption from
high cost timings to low cost or environment friendly timings.

However, for a DSM strategy to be viable for domestic con-
sumer it is imperative that this load movement is acceptable to

the consumers schedules and practical constraints. Historically
it has been observed that strategies which do not consider
consumers preferences as first class requirement fail to deliver
to their promises due to stiff resistance or non-cooperation
of the consumers. As Kim and Shcherbakova report on the
reasons for DSM failures, the consumer needs to be involved in
the DSM activities and her requirements need to be understood
and catered for [11]. To cater to the consumer’s needs there
are two strategies used by the DSM planners and researchers:
Either consumer’s exact requirements are captured by elicited
the deadline within which the task much be achieved [1], or
the devices are assigned priorities and these priorities are used
for planning [3].

The difference in the two strategies on operational level may
seem insignificant on first observation but from computational
perspective the two strategies have significant implication in
the scalability of the system. The preference based scheduling
problem is a very common problem in operations research and
computer science. Various job scheduling tasks exist in real
world and researchers have analyzed this problem in detail.
Scheduling of loads constrained by preferences is very similar
to job scheduling problem. However, this problem is classified
as NP-complete problem and to-date no scalable algorithm
has been proposed to solve this problem. The implication
of this NP-complete classification is that a problem without
necessary transformations will be intractable for large number
of devices. As the number of decision points, in this case
number of devices, increases the time to compute will increase
exponentially.

On the other hand priority based systems are able to
aggregate the priority class demands and the planning decision
reduces from controlling hundreds of devices under constraints
to the frequency of devices in each priority class. Since the
number of priority classes is much smaller than number of
devices, planning for this system is tractable. ColorPower
is examples of such techniques [16]. This reduction in size
makes the problem tractable for a micro-grid or even city level
scheduling.

However, priority classes are limiting in that deadlines for
individual devices are not part of the scheduling. This is the
case in the works observed by the authors. This is problematic



as this results in lower consumer satisfaction as the needs of
the consumer can be violated. From experience in Power7 of
UK we know that the consumers life styles are dynamic and
such fixed measures are not very useful. To end in this paper
we propose a novel transformation of deadlines to priority
(DeLi2P) based model.

Deli2P collects user deadlines from devices. The modern
electronic devices are fitted with timers to stop or start a device
at a specific time in future. Similar to these timers, Deli2P
consumer can select the time at which she requires the device’s
process to be complete by putting in the ”putoff” time on the
device or device plug interface. For example if a consumer is
putting in dishes for washing then the consumer can feed in
6 hours for the dishes to be washed and ready.

Deli2P transforms this deadline into a priority in the fol-
lowing way. For each two hour gap in start time we decrease
the priority of the device. That is, if the device is required to
complete its operation in 6 hours then the priority level for
the device will be yell (Third highest for 2 x 3 hours). With
each device assigned a priority based on the time available for
execution we can aggregate the priority demands and schedule
the device operations in the same way as is done by Ranade
and Beal [16]. If the turn to activate the device is not received
till the next priority threshold ( four hours till deadline in this
case) then the priority level of the device is bumped up. With a
higher priority level, the device has a higher chance of getting
the activation signal. This process is continued till the device
is either run or is it at the highest priority level where it is
guaranteed execution.

When sufficient supply is available the system allows all
the devices to execute as soon as they submit a demand to
consume. As the demand grows above the supply, the devices
with the least priority are instructed to ”wait” for servicing
based on a probabilistic model. This ensures that the demand
never surpasses the supply. In the early hours of the day the
demand is less than supply and all devices are given go ahead
for execution but as the wave of demand crosses the supply
line our algorithm skims the supply line while the wave of
demand grows till the later hours of the day when wave comes
crashing down as the overall demand of electricity dies out at
later hours of the night. Deli2P in this way is able to reduce
the peak demand of the day while satisfying the consumer’s
preferences. To evaluate our strategy we tested. We used a
smart grid city wide device level simulator.

II. RELATED WORK

When we look at the demand side management (DSM)
techniques for home consumers we see two goals for the
algorithms. A range of algorithms attempt to reduce the cost of
electricity for the consumers. These include algorithms which
incorporate the time of use pricing in reducing the cost of
electricity of the consumer [8][13], and DSM systems which
maximizes the benefit of renewable energy sources for home
consumer [1][5]. For these systems the goal is not overall
supply-demand management but rather it is to minimize the
cost of electricity to the consumer. However, this does not

guarantee that the demand is shaped according to the global
or utility’s goals. To achieve this specific goals direct control
systems are proposed which aim at reducing the peak load.
The difference is that in the first category the goal is cost
reduction and peak load reduction is implicit whereas in the
second the peak load reduction is the goal and cost savings
due to better load profiles are implicit.

The direct control algorithms control thus control the con-
sumer devices remotely. However, shutting down end user
device is usually not very acceptable to the end users. This
has been studied and expounded by many researchers [11].
To capture the needs of the consumers there are two main
processes proposed in the literature.

One stream of research for such DSMs is to gather the
preferences or constraints of the consumers. That is, for each
device the system predicts or collects from user the range
within which the device can be scheduled. These constraint
elicitation can be implicit as is the case Du and Lu [6]
and Molderink [14] where forecasting and consumer profiling
using sensors in the user premises are used to determine the
constraints of the consumers. In other cases such as those
proposed by Kim and Poor [12] and Arif and colleagues
[1], the constraints are explicitly provided by the consumers
through some interface. The authors of the systems argue that
since we have knowledge of the consumer’s constraints and
schedule the devices accordingly, the DSM load management
will be acceptable to the consumers.

However, as has been discussed by Molderink [14], Arif
[1] and Javed in AdOpt [10], such scheduling is NP-complete
[17]. To date there has been no polynomial time algorithm to
solve the NP-complete problems. The only way to solve such
problems is to enumerate all the possible combination which
is exponential and thus planning for hundreds of thousands
of devices is not possible. Use of artificial intelligence tech-
niques such as genetic algorithms and ant colony optimization
decrease the computation time but still take too long for large
scale system scheduling and are known to be inaccurate.

The other stream is to allow the users to stipulate priority
classes to devices or join the device to a contractual obligation
group. ColorPower1 and ColorPower 2 allow the consumers to
assign priorities to devices [16], [3]. The system then manages
the probability of execution for each priority class such that the
demand shaping goals are reached while maintaining that the
distribution is fair and according to consumer’s priorities. Kim
and Poor also proposed similar system however their grading
of the devices was not as versatile[12]. Pennywise on the
other hand allow users to sign contracts with the utility. Since
these contracts are standardized the utility can bunch together
devices under similar contracts for computation. Escriv and
colleagues also used such contracts for their proposed DSM
strategy [7].

Since in these systems there is a natural way to combine
the devices into consumption classes, the number of decision
variable reduces to the number of consumption classes. For
few hundred classes the existing algorithms are able to solve
within a reasonable time as is shown by Javed and Arshad in



Fig. 1. .

Fig. 2. Priority scale for DeLi2P. As the deadline time approaches the priority
color transitions from green to yellow to red and then black, the highest
priority level.

AdOpt [10].

However, since the priority systems observed by the authors
are somewhat rigid. ColorPower, and Pennywise do not allow
the consumers to change the priorities. Colorpower allows
consumers to press an emergency button to explicitly demand
electricity. However if priority of a device changes then this
updation will take 24 hours to come into effect. Similarly re-
negotiating contracts for Pennywise or in Escriva’s system
is a cumbersome task. As has been shown in UK’s Power7
package, the consumers do not like to be bounded to certain
priorities and contracts. As a biological being, the priorities
and needs for the human consumer changes rapidly and
regularly. The priorities for consumers are rarely consistent
and fixed contracts do not do justice either.

To end in this paper we propose a unique transformation to
convert a simple deadline based user feedback into a priority
based system. Since we collect explicit preference and bound
the system by it, we can reap the benefits of better user
acceptability. Since we convert these preferences into priorities
very similar to the ColorPower scheme, we can compute the
solution in reasonably small time as well getting use the benefit
of both the systems.

Fig. 3. ColorPower [3] controller for device.

Fig. 4. ColorPower [3] controller for the grid.

III. PROPOSED STRATEGY

The goal of DSM is to control consumer devices to reduce
the electricity demand to specific thresholds. As previously
discussed, there are two non-functional requirements of the
DSM system, first is that it should be scalable and second
it should be bound by the needs of the consumers. In this
regard the priority based algorithms provide adequate solution
for the first requirement. For instance, ColorPower is scalable,
provides privacy preserving aggregation method and is fair in
its distribution of electricity.

The algorithm operates in the following way. The consumer
assigns each device a color specifying its priority as shown
in figure 2. At every heartbeat the home controller collects
its demand from devices of each color. If two devices are
yellow then it will add the demand of both devices as yellow.
The algorithm provides for a grid wise aggregation mechanism
whereby the grid controller has the aggregated demands for
each of the four priority colors. The grid controller then
assigns a probability to each priority color based on the supply
demand equation. The policy is that the highest priority gets
to use the supply till its demand is met. If supply is left then
the lower priority is provided the supply. If for a priority level
the supply is partial then each device in the priority is given
a probability based on the amount of electricity available and
the demand of that color. This way the lower priority devices
run on a probabilistic basis.

However, this scheme does not provide provisions for
the consumer to constraint the load movement according to
consumer’s operations. If a consumer purchases a washing
machine then she would wish to have the clothes washed
within a specific period of time and if the algorithm does
not provide this guarantee then the consumer will be tempted
to bump up the device’s priority to get the required service.
This may result in spiraling up of priorities thereby leaving
no space for optimization.

DeLi2P uses the same efficient, scalable and fair Col-
orPower (CP) controllers to provide control of the device
to the utility planner. The main contribution is that instead
of consumer assigning priorities, we make these priorities
adaptable in that the device controller adapts the devices’ color
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Fig. 5. Graphs showing net demand, demand shaping through ColorPower and through DeLi2P.

according to the amount of time it has to complete the task.
The difference is that when a consumer attempts to use a

device, the consumer is provided with a timer to set the time of
task completion. This can be achieved by installing a timer on
the device. This maybe an external timer for legacy machine or
it maybe an internal timer in the future smart devices however,
discussion of its deployment is beyond the scope of this work.
The consumer sets the time when she requires the task to be
completed. Based on the time to deadline DeLi2P calculates
the color of the device at runtime using the following formula:

Ci =
d(di − oi)− curre

len(k)

Where di is the deadline set by the user, oi is the operational
execution time or the maximum time it will take the device
to complete the task and curr is the current time. Ci is the
priority color of the device at time curr. len(k) is the length
of interval that we give to each color. In our case it is 120
minutes.

As the time moves forward, that is the difference between
(di − oi) − curr reduces, the priority of the device increase
thereby increasing its chance to complete the task. The op-
erational flow is similar to ColorPower except for the color
assignment After each two minute period the color for the
device is ascertained. If the consumer has asked for the device
to operate and the operation has not yet started then the color
is propagated to the CP home controller along with historical
consumption value. The CP home controller aggregates the
demand for each color, adds it to the data passed by previous
house and passes it forward to next house so that it is
transmitted to the CP Grid controller as shown in figure 1
and discussed in [16]. The CP grid controller based on its
algorithm shown in figure 4 calculate the fractional part for
each color. This value is passed to the CP Device controller
and the device controller selects the state of the device using
formula in figure 3

To illustrate the process, let us assume that a consumer
attempts to use washing machine. The consumer wants the
operation to be completed in 8 hours time and the operational
execution time for the machine is 1 hour. Thus we have (8 - 1)

hours to complete the task. This puts the device in yellow or
category 3. Based on the global demand the CP grid controller
assign probabilities to the colors and these probabilities are
propagated to the CP device controllers. If at this time the
supply is sufficient to supply yellow priority then this device
will run immediately. But if yellow is partially supplied or not
supplied at all then this device will use the CP controller using
formula in figure 3. If the device gets a chance to run then
it will execute otherwise it will wait till Ci is red. With an
updated color the device’s probability of execution will chance.
If the supply is so short that even the red does not execute
then after 2 hours the device will turn black. Since black is
emergency color the device will be provided with supply and
the task will be achieved within the stipulated time.

To illustrate on grid let us consider the demand in figure
5(a). This is hypothetical demand where each of the priority
level is equally divided. This is the demand that was assumed
by ColorPower authors for their validation [16]. The second
figure 5(b) shows the response of ColorPower and similar
algorithms. As can be seen the demand is flat lined at
demand of 140 units. This may result in a yellow device to
be unavailable for as much as 20 hours. To ameliorate this
situation in figure 5(c) the response of DeLi2P is shown. As
the time moves forward DeLi2P elevates the priority of yellow,
green and red. This elevation of priority means that the device
has the opportunity to run within the deadline constrain set by
the consumer. the deadline will fail only when a part of black is
above the threshold line. This in essence is the breaking point
of the algorithm, that is, if we require to shut down devices in
black then the deadlines for those consumers will be violated.
In comparison ColorPower does not cater for this dimension
hence evaluating it for deadline failure is not possible.

In this section we have first described how are strategy
will consider consumers deadlines. Then we have discussed
how we incorporates existing ColorPower algorithm for our
planning. We close this section with description of how
DeLi2P will impact the consumer and how it will impact the
global demand shape and shown how the load shedding targets
will be achieved without violating the consumer preferences.
In the next section we will discuss the experimental setup and
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Fig. 6. Graphs showing demand and DSM through DeLi2P results. On the left the graphs show the demand for the day and on the right the demand after
application of DeLi2P. The peak demand ranges from 26MW on day 3 to 23MW on day 2. on all these days DeLi2P has restricted the peak demand to
18MW without violating consumer deadlines

our results on the simulation data.

IV. PROBLEM MODEL

In this section we model the demand of electricity according
to its priorities. The time in our algorithm is divided into t
time slices and we have j priorities. Demand of electricity for
j priority class generated in a time slice t is given as:

∀jdjt = Demand for jth priority at t time

For ColorPower, this will also be net demand or Dj
t of the

respective time slice and the priority class since there is no
concept of carrying over load which has not been provided
supply. But for DeLi2P, load which is not provided supply
is considered is carried over thus net demand at time t for j
priority class is:

∀jDj
t = djt + (Dj

t−1 × pjt−1 + ∆j−1
t )−∆j

t

Here ∆j−1
t is the demand for the lower priority level which

has expired and needs to elevated to the next level and ∆j
t is

the expired demand from jth level which needs to be elevated
to the j + 1th level.
pjt is the probability of selection for the jth priority at

time t. DeLi2P and ColorPower use the same formulation for
calculating pjt gieven as:

pjt = 1 if
max(j)∑
i=j

Di
t ≤ S

pjt = 0 if
max(j)∑
i=j+1

Di
t ≥ S



pjt =
S −

∑max(j)
i=j+1 Di

t

Dj
t

otherwise

Where S is the total supply to the system.
The graphs in figure 6 show this transformation of priority

level induced by the transfer of ∆ load from load priority
levels to higher levels. Though the probability assignment in
ColorPower and DeLi2P is same, the underlying total demand
Dj

t varies in DeLi2P to incorporate the concept of deadline
but in ColorPower, the deadline is not accommodated.

V. EXPERIMENTAL SETUP

To carry out analysis, simulations for the proposed algo-
rithm and related work were developed in C Sharp program-
ming language. These simulations were conducted on Intel
i5 Processor with 4GB of physical memory having 2.4GHz of
clock speed. Power consumption data for 100 different devices
was used in simulations for extensive testing of algorithms.
The data is generated at the rate of 2 samples / minute by
the configurable simulator presented in [2]. The aggregated
consumption of each device at a articular time window was
used to compute average power for that specific appliance. The
average powers were then put to use in demand response algo-
rithms corresponding to the time window for which they were
computed to obtain results close to the actual environment.

VI. RESULTS

In this section we show the results of applying DeLi2P over
the house devices in 200 houses. As described earlier, when a
consumer attempts to use a machine and the system asks the
consumer to provide a deadline by which time she requires the
task done. Based on the available time the algorithm assigns a
priority level. Based on the overall supply-demand equation,
the device is run when based on probability provided by the
grid controller the device controller has the chance to run. In
case if the algorithm was not present then the device will run
at the very minute the consumer attempts to use the machine.

The results of application of DeLi2P are shown in figure
6. The graphs on the left show the demand of the system
without DeLi2P and on the right the results are with DeLi2P
with 18000 KW (18MW) as the target maximum load. As can
be seen, DeLi2P is able to maintain this target even though
the demand ranged from 25 MW on day 3 to 23 MW on day
2 while satisfying the deadlines set by the consumers.

VII. CONCLUSION AND FUTURE WORK

The need to incorporate consumer’s priorities and require-
ments in to demand side management system is critical to
its acceptance and thereby its use. In this paper we have
considered two key requirements for increasing the accept-
ability of the consumer. First we have provided a way for the
consumer to be an active part of the DSM. This provides a
satisficing feeling to the consumer as proposed by Breukers
and colleagues [4]. Secondly, we have provided a way for the
consumer’s deadlines to be catered for in a scalable manner
by converting those deadlines to priority levels and thereby
making the algorithm scalable, secure and fair as well.

We see this as a very viable solution for future DSM
systems. The future of this work is to apply it to a residential
area and observe the consumer’s response to this strategy. A
second path of research is to incorporate machine learning to
learn consumer behavior in order to automate the timer task
in order to aid the consumer. Another avenue is to incorporate
time of use pricing in this system such that the consumer is
informed of the price savings that she can achieve by setting
the timer to a later time.
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