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The electric grid is changing. With the smart grid the demand response (DR) programs will hopefully
make the grid more resilient and cost efficient. However, a scheme where consumers can directly partic-
ipate in demand management requires new efforts for forecasting the electric loads of individual con-
sumers. In this paper we try to find answers to two main questions for forecasting loads for individual
consumers: First, can current short term load forecasting (STLF) models work efficiently for forecasting
individual households? Second, do the anthropologic and structural variables enhance the forecasting
accuracy of individual consumer loads? Our analysis show that a single multi-dimensional model fore-
casting for all houses using anthropologic and structural data variables is more efficient than a forecast
based on traditional global measures. We have provided an extensive empirical evidence to support our
claims.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The electric grid is going through a major change. Smart grid
initiatives around the world are pushing the grid into a more ro-
bust, dynamic and open system which will bring consumers and
their devices directly into the management realm of the grid. This
integration of IT provides a great opportunity for improving and
enhancing DSM and DR programs. Such programs can be improved
with intelligence, pervasive device management or renewable
integration for increased throughput. Various DSM planning strat-
egies have been proposed for smart grids but to implement such
planning methods the knowledge of the amount of energy demand
at house level is a must. This requires a short term load forecast for
houses, and in some cases even devices. To this end in this paper
we propose two unique concepts for short term load forecasting
of houses through which accuracy for forecasting loads of houses
can increase by as much as 50%. This provides an important cog
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in our proposed smart grid architecture for demand side manage-
ment discussed in Appendix A.

Forecasting for larger loads such as city or the entire grid has
been achieved with relatively high accuracy [1]. But for smaller
populations such as a building, or a micro-grid the dynamics
change so drastically that standard STLF tools require certain re-
adjustments [4]. For even smaller consumer group, such as individ-
ual houses, the volatility in dynamics is even more pronounced as
can be seen from discussion in Section 2. To forecast for such sys-
tem we need to look at the STLF modeling, tools, and data. There
are two pertinent questions to engineer these re-adjustments for
STLF for individual houses in a system that we answer in this pa-
per. First is that can we forecast energy load using the existing
short term load forecasting model? Second question is that is the
knowledge used for existing forecasting models sufficient?

Kim and Shcherbakova point out at the lack of data about user
as one of the major reason failure for DSM and DR programs [20].
But our initial results showed that simple correlation between
house load and house characteristics is weak as shown in Fig. 1.
The strongest influence on demand is weather. This was observed
on anthropologic and structural data collected from 205 houses in
Eskistuna, Sweden. However, we observed a subtle relationship be-
tween user characteristics and consumption.

Our contributions use this subtle relationship between house
statistics and consumption. The relationship between energy use
and occupant and building characteristic is such that on a single
house level it is insignificant. This can be observed from results
in smart grids: An analysis on use of anthropologic and structural data and
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Fig. 1. Correlation of anthropologic and structural variables with house loads for the four test months ((a) January, (b) April, (c) July and (d) October). The most consistent
correlation is with attribute 2 (temperature). The highest correlation of 0.39 is with attribute for the month of July. This attribute represents answer to the question translated
to ‘‘Do you heat your pool?’’.

Table 1
Forecast accuracy for six commonly used forecasting methods and our proposed method for a week in month of January. Columns 1–4 represent results using only time series and
global parameters. Columns 5 and 6 are forecast accuracy using richer data set. Column 7 shows accuracy of our proposed system.

GARCH (%) Exponential smoothing (%) MLR (%) ANN (%) MLR (with rich data) (%) ANN (%) Proposed STMLF method (%)

47 31 49.1 38 49.2 36 60
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of MLR and ANN forecast using richer data as shown in Table 1. The
increase in accuracy is marginal. But across the population the im-
pact can be identified and quantified for forecasting. To effectively
use this impact we build a single succinct model for all the houses.
That is we provide to a single ANN trainer time series data for all
the houses. Each training example contains the date, time, con-
sumption load and the anthropologic and structural data of that
load. Since we provide data for all the houses, data points with
similar characteristics re-enforce trends for a more crisp model
resulting in a more stable and accurate forecast.

To illustrate how this work let us take example of two houses,
one with school going occupants and the other without such occu-
pants. The bulk of energy consumption in both cases will be driven
by weather pattern. The colder it is the more energy will be used.
But for houses with school going occupants, the energy usage in
the early hours of weekdays will be different than the others. Fur-
thermore, This will be common in all the houses with school going
children.

The idea is that we train a single multi-dimensional model
using the data from all the houses. This on its own will mean that
the forecast will be average load for each hour for all the houses.
This is where our second contribution comes in. We augment this
single model by adding the anthropologic and structural data to
the model. This additional information allows certain modelers
to make sub-groups within the model for particular anthropologic
and structural population groups. In our example if the modeler is
able to identify the relationship of a house having school going
occupants with extra energy consumption in earlier hours on
Please cite this article in press as: Javed F et al. Forecasting for demand response
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weekdays then this will allow the model to add a premium to con-
sumption over what the weather pattern will forecast. Since all
houses with school going children will have similar trends, if a sin-
gle house has a different trend for a short period of time, for in-
stance because child being sick and missing school, then a global
modeler will not over-fit the model and still forecast accurately
when the local temporal phenomenon expires. Note that an expo-
nentially high number of sub-classes exist for the population but a
combined model adds and subtracts premiums over the base fore-
cast to derive a more crisp load for each house.

This modeling method is inherently different from modeling for
each house independently (STLF). It is also different from modeling
for all the houses without the anthropologic and structural data.
We would like to stress here that the forecasting engine (ANN) is
not part of the contribution. The contribution is the new modeling
paradigm – short term MULTIPLE load forecasting (STMLF) and the
use of anthropologic and structural data within STMLF. As we will
show this combination increases forecast efficiency for both AI
based and statistical forecasters. To stress on the improvement of
forecast based on our contribution and avoid engine specific
enhancements we use the simplest of statistical and AI forecasters.
2. Problem description: issues in house level forecasting

The future DSM and DR techniques of smart grids will have a
fine grained control of the end-user loads. This control will requires
a reliable forecast for house loads. There are two options for
in smart grids: An analysis on use of anthropologic and structural data and
.1016/j.apenergy.2012.02.027
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Table 2
Comparison of volatility measure of individual loads, microgrid loads and standard grid loads.

System Individual loads (University of Calgary) Micro-grid power system Alberta’s Ontario’s power system

Standard deviation of rate of change 0.82 3.83 � 10�2 1.84 � 10�2 2.69 � 10�2

Fig. 2. Box and whisker plot for consumers load over a 24 h period of 204 houses
from Eskistuna, Sweden. Whiskers point the maximum load for the hour upper and
lower box edges are 25th and 75th quartiles respectively and the line in box is the
median. On X axis is time at intervals of 1 h and Y axis is load in kW h.
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forecasting. One is to forecast individual house loads indepen-
dently and second is to aggregate the loads and construct a single
forecasting model.

But forecasting for smaller populations is a much difficult task
since in larger populations, smaller loads tend to attenuate or neu-
tralize to produce a stable time-series. But for a single house load,
the system volatility is so extreme that forecasting becomes diffi-
cult. As shown in Table 2 volatility is two orders of magnitude lar-
ger than the volatility of a region and micro-grids. This high
volatility resulted in less than ordinary forecasting for standard
tools used for large scale forecasting as well as for those used for
micro-grid load forecasting as shown in Table 1. Here we fore-
casted energy load for each house using four commonly used fore-
casting techniques. GARCH [5] is a commonly used time series
Fig. 3. Classification of survey questions. We classified questions as anthropologic (hum
occupants impact or usage of structural facilities.
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analysis technique, exponential smoothing and multiple linear
regression (MLR) [7] are statistical methods. Whereas GARCH
and exponential smoothing forecast based on time-series alone,
MLR attempts to model the relationship between multiple explan-
atory variables and a response variable. This makes MLR and arti-
ficial neural network, an artificial intelligence based technique,
candidates for forecasting with richer data. As can be seen, none
of the forecasters could attain accuracy of more than 50%.

Irrespective of accuracy results an important consideration for
modeling this system is the scalability of the proposed technique.
Since a forecast is needed for each house, this means that for each
house we will need to invest processing power. As we will shown
in Section 3 this makes the system unscalable for large popula-
tions. To make this system applicable for smart grids, a more suc-
cinct and robust model is required which STMLF2 is able to provide.

On the other hand, using the existing methods and data, Fore-
casting for aggregated load is not feasible since within a popula-
tion, different houses have different loads. This is evident from
the box and whisker plot in Fig. 2 for a 24 h period for load data
of a single day of 204 houses from Eskistuna, Sweden. The whiskers
show the maximal value in a given hour and box encloses 50% of
the total data (top edge represents 75th quartile and bottom edge
25th quartile and line in middle the median). If we construct a
model using only global phenomenons then irrespective of fore-
casting engine, there is no way to differentiate between loads
which are close to mean and which are not. This causes an accu-
racy drop and increase in mean square error (MSE).

However, it is argued that since the load forecasting tools so far
needed forecast for entire population, data which effected the en-
tire population equally was sufficient to model the total load. But
since each house has its own characteristics, it is worthwhile to
consider characteristics of a house for forecasting energy load.

There are two types of data variables which affects the load
consumption: anthropologic aspects and structural variants.
an centric), or structural (building specific) and pseudo-anthropologic which are

in smart grids: An analysis on use of anthropologic and structural data and
.1016/j.apenergy.2012.02.027

http://dx.doi.org/10.1016/j.apenergy.2012.02.027


4 F. Javed et al. / Applied Energy xxx (2012) xxx–xxx
Anthropologic aspects are occupant characteristics such as number
of occupants and age while structural variants capture the physical
characteristics of the house. To construct a forecasting model
which can differentiate between consumers we conducted a survey
consisting of both anthropologic and structural questions. The de-
tails of the survey are provided in Fig. 3.

This questionnaire combines a mixture of anthropologic (Col-
umn 1) and structural (Column 2) questions and pseudo-anthropo-
logic (Column 3) questions. These questions are aimed at capturing
a variety of information that ranges from the ages of occupants and
their general behavior of occupation to the type of walls, heating
equipment, covered area of property, etc.

However, this data in the existing STLF modeling method does
not produce any better forecast than the statistical methods. Col-
umns 4–5 of Table 1 shows results of STLF techniques which can
incorporate higher order data for forecasting energy loads. Here,
statistical technique (MLR) and standard AI technique (ANN) are
used for this forecasting. But it can be observed that merely adding
more data to the existing STLF model does not result in improve-
ment in forecast accuracy.
3. STMLF model

The need for STMLF is born out of the inherent short comings of
existing short term load forecasting models when forecasting for
household loads. These short-comings stem from the fact that till
recently, the control of energy in grid did not provide a detailed
control of the demand side. The demand side, although made up
of individual loads with their own profiles, was considered as a sin-
gle large chunk. Some researchers acknowledged this diversity of
patterns in load data but they only used the sub-pattern to forecast
the total load of the system and were less concerned with forecast-
ing individual loads. For example, [28,23] leveraged this fact by
identifying these patterns through wavelet transform and fore-
casted the more crisp sub-patterns rather than a complex com-
bined pattern. These sub-patterns were then combined to form a
single forecast for the entire system. The break-down of the wave-
let in [23] was also to a degree where it was needed for large sys-
tem forecast and not to forecast independent components of the
load.

However for our proposed ADSM (Appendix A) in micro-grids
the need is no longer for an aggregation of all loads, rather our
interest is to find the individual load value for each house for
DSM. But the existing methods which are used for STLF are explic-
itly limited to single time series. There are two options, either we
use existing STLF for each house or we appropriately transform
the STLF model to work for forecasting multiple loads. As shown
in the previous section, STLF for single loads has low accuracy for
such forecasting. We found that transforming STLF to a succinct
multi-load model not only increase efficiency of running time
but also increase the accuracy of forecast as well. To understand
this transformation we will first define STLF as an abstract system
and then use this abstract model to explain the transformations to
realize the multi-load model we call STMLF.
3.1. STLF operations

To understand the working of STLF and reason about the need
for STMLF, we will first diverge for a brief discussion on STLF’s
working at an abstract level. STLF is usually a two step process.
First an STLF modeler builds a model based on the time-series of
consumption. This time-series in most cases is complemented by
other environmental variants which effect energy load. These
may include temperature, time of day, season, day of week, etc.
In addition each model requires some tuning parameters and con-
Please cite this article in press as: Javed F et al. Forecasting for demand response
short term multiple loads forecasting. Appl Energy (2012), http://dx.doi.org/10
stants such as weights for algorithms which are specific to the
algorithm and the input data. These are the invariants, or variable
which do not change over time.

Formally we can say that STLF modeler is a function given by:

STLFðTð1::j;0::t�1Þ; P0::t�1; EÞ ¼ M ð1Þ

where T(1..j,0..t�1) is the time-series for j environmental variants such
as temperature, wind, and solar radiance, P0..t�1 is the historical
time series data of load and E are the local invariants and tuning
parameters such as weights given to parameters.

For most forecasting engines the input is usually streamed as
series of tuples of data. Each tuple is made of j + 1 + jEj values, j val-
ues for j environment variables, 1 value for the load and jEj values
for the number of invariants. For example, for fifth time quantum
there will be four tuples representing readings from first four time
quanta and so on.

Based on this input STLF creates a model M. M can be simulated
such that effects of environment variants T(1..j,t), and invariants E
for a specific time t over this model produce load Pt. That is:

simulateðM; t; Tð1::j;t�1Þ; EÞ ¼ Pt ð2Þ

Here Pt is the forecast for the system for time T = 1. The modeler
usually associate the variants with specific load values. This creates
a model of the system to be forecasted. When a new forecast is re-
quired the model is simulated by providing it with variant and
invariant data for forecasting period and model simulation pro-
duces the load value which is associated with the input data.

3.2. STLF for independent house forecast

STLF forecasts are for a single system. To forecast for a number
of houses, this translates to having an STLF modeler and simulator
for each house. For such, following the general convention of STLF,
the input to each modeler will be series of t tuples where t is the
length of training period. Each tuple will contain the environment
variable value, the load of the house and invariants for the mod-
eler. There are two problems with this method of forecasting
which we have discussed briefly before and will delve in more de-
tail here.

First, such a large number of modelers will require large compu-
tational resources. Either each house will require computing re-
sources to store data of the house and run a computationally
complex model for every forecast or the utility will require numer-
ous computing resources to achieve this goal.

Secondly, as we have pointed out in the previous section, the
load curve of a house is order of magnitude more volatile than
any other system that STLF has been applied on. There are further
two issues with modeling such volatile systems. First, sufficient
data attributes should be there to discriminate the root causes of
volatility and second sufficient data should be provided to avoid
over-fitting. Over-fitting is the phenomenon when a forecaster
captures outliers, or out of ordinary incidences and considers them
part of the normal operations, thus increasing the error of forecast.
First issue is related to the number of attributes of data and second
issue is related to number of good examples for each attribute
combination.

Application of STLFs over house loads with existing data suffer
from both of these problems. As we will show in our experiments
the existing global variants are insufficient to discriminate house
loads. This is because the house data is too volatile and the envi-
ronmental variants of system are insufficient to associate a load va-
lue to the input. This is evident from our evaluation results later
which show STLFs as ineffective in forecast loads of houses.

To illustrate this point further let us take the example discussed
in Section 1. If each house has its own forecast then the model will
in smart grids: An analysis on use of anthropologic and structural data and
.1016/j.apenergy.2012.02.027
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have insufficient data to avoid over-fitting. Even increasing the
training window will not have much effect. Secondly, we do not
gain any information from cross cutting patterns in the society
since each model is independent of other houses. If we move this
STLF to neighborhood level then we will have sufficient data to
avoid over fitting but this model will not be able to capture the dif-
ferences in load variations since it does not have the discriminating
attribute to capture the volatility of sub-systems. Input vector to
this modeler will be the total (or average) load value, global vari-
ants and system invariants. The result will be a forecast for average
load of all the houses. This will be an inaccurate forecast for both
the house with school-going children and for those who do not
have this peculiar characteristic. Thus we need a forecast which
has considerable size of data to avoid over-fitting and sufficient
attributes to differentiate between different load patterns.
3.3. STMLF1

To ameliorate this problem we propose STMLF, a modeling
framework for combining multiple time-series. We propose two
paradigm shifts from STLF for this model.

First, instead of creating load model from a single time-series,
we use all the available time-series as training data. This is differ-
ent from sum of loads where all the loads are summed and STLF
forecasts the sum (or average) of loads. Rather each load and its
attributes are passed to the modeler as a tuple. That is instead of
providing one value for each time-period, we provide n tuples for
each time-period. Here n is the number of houses. This resolves
the issue of over-fitting since sufficiently diverse data smooths
the out of ordinary events.

But just combining time-series in a single system is not suffi-
cient. As we have discussed above, we need to provide discriminat-
ing attribute for the modeler to associate the learning output value
with the input values.

Our first attempt was to use houseIds as the discriminating
attribute. Such a model can be expressed as:

STMLF1ðTð1::j;0::t�1Þ; P1ð0::t�1Þ ; ::; Pnð0::t�1Þ ; E;houseIdÞ ¼M1 ð3Þ

Here T and E are same as in single load forecasting but for each load
i a time series Pi is also considered.

The resultant model M can be simulated to map time t, environ-
mental variants T, invariants E, and the index of load i to predicted
load for P(i,t). That is:

simulateðM1; t; Tð1::j;tÞ; E;houseIdÞ ¼ Pi;t ð4Þ

In this model an input tuple in addition to load value, environ-
mental variants and system invariants also contains the houseId
flag. For house number x the xth flag is set as one and the rest as
zeros.

This scheme has two drawbacks. First houseId is too vague for
the modeler to associate load patterns with. We will show this in
the discussion of results where it is evident that most of the fore-
casts of STMLF1 are in a narrow band of values. Second, this scheme
is computationally complex and not scalable as we will discuss la-
ter in this section. A graphical representation of STMLF using hou-
seId as discriminants in a neural network is shown in Fig. 4b.
3.4. STMLF2

Instead of this complex and inaccurate model, our second para-
digm shift is to consider richer data for forecast. This richer data
incorporates the anthropologic and structural data discussed in
Section 2. This resolves both the problems we faced in using inde-
pendent STLFs and in using a combined model using houseIds.
Please cite this article in press as: Javed F et al. Forecasting for demand response
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In this methodology, the modeler is provided with the local
invariants in addition to the global variants to construct its model.
An input tuple for STMLF2 consists of the j environment variants,
the load data for the house, the system invariants and in addition
local invariants of the house which correspond to the load P.

STMLF2 considering this richer data is expressed as following:

STMLF2 Tð1::j;0::t�1Þ; Pð1::n;0::t�1Þ; E; E
0
ð1::n;1::kÞ

� �
¼M2 ð5Þ

Here E0ð1::i;1::kÞ are the invariants of house to the load time series. A
forecasting engine will create a model which will associate T, P,
and E0 with the outout. Simulating this model is a bit different. In-
stead of providing the house flag, the invariants of houses with
E01::m values are used, in addition to t and T, to construct a forecast
for all the houses with E01::m characteristics.

simulate M2; t; Tð1::j;tÞ; E
0
ð1::mÞ; E

� �
¼ Pð1::m;tÞ ð6Þ

We will first discuss its graphical representation in neural net-
work model and then discuss why it is better than STLF and
STMLF1. A graphical representation of STMLF using richer data as
discriminants in a neural network is shown in Fig. 4c. Each training
record of our model is a tuple consisting of global variants (hour of
day, day of week, temperature, etc.), house variants (number of
occupants, number of school going children, wall types, etc.), and
load value for that houseId under the variants. Each input attribute
corresponds to a neuron of first layer. The trainer associates
weights with each neuron.

In this model different input parameters or their combinations
are assigned according to the training data. Temperature and time
of day may have higher weights but statistics such as number of
children will add their weight to the output as well. This weight
can be positive or negative and modulates the temperature driven
load on the basis of local characteristics.

To explain this further let us consider the example we discussed
above. In such a case, when input for number of school going chil-
dren is positive and time and date is early in the morning and
weekday then the internal node connected with these input neu-
rons will add positive weight to the output. So for all the houses
with these characteristics, in addition to the load forecasted due
to weather conditions, an additional load will be added. In compar-
ison, houses with no school going children will only be affected
with weather conditions. We add another twist to this example.
For the houses with senior citizens, the consumption may be low
early in the morning but will be high around 10 am. For the houses
which contains senior citizens, a load will be added to the base
load at 10 am. For those with school going children, the addition
will be for 7 am. But if a house has both then it will borrow from
both models and will register specific consumption patterns for
both 7 am and 10 am. in this way we can potentially construct a
model from a subset of houses and use this model to forecast
houses with similar trends and traits for forecasting.

3.5. Model complexity

We have discussed three models. First is an STLF for each house,
second is the STMLF using houseId as discriminant and last is
STMLF with house attributes as discriminant. Complexity of a mod-
eler is generally expressed in terms of the extra time system will
take with addition of input parameters. Traditionally O() (big oh)
analysis considers the worst time, that is the most time that algo-
rithm can ever take and is taken as the academic and industrial
standard in computational sciences. Here we would like to clarify
that O(1) does not mean a small execution time. Rather it means
that as we increase the number of houses, the expected worst time
of completion of algorithm remains unchanged for a single mod-
in smart grids: An analysis on use of anthropologic and structural data and
.1016/j.apenergy.2012.02.027
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Fig. 4. ANN models for three forecasters. (a) Is ANN model is for a single house where only load and global invariants are provided for forecast. (b) Is the ANN model for
STMLF1. (c) Is the ANN model for STMLF2
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eler. Scalable modeler is one which is at the most some polynomial
function of input variables since power series or exponential series
are intractable for large data sets. Without loss of generality we can
assume the complexity, or efficiency, of a modeler as O(xc) where x
is the number of input parameters and c is modeler efficiency. In
other words, O(xc) is the order of the time in which the modeler
is able to make a model of a system with c input parameters.

Considering the complexity of our modeler, STLF for each house
will have the complexity of:

OSTLF ¼ n� OðjcÞ ¼ OðnÞ � OðjcÞ

That is, we will have n STLFs and for each STLF we will require
O(jc) computations. Here j are the number of environment
variables.

Since j is not dependent on the number of houses, Ec is a con-
stant for a system with fixed E and c thus O(Ec) = O(1):

OSTLF ¼ OðnÞ � Oð1Þ ¼ OðnÞ

In comparison STMLF1 with houseId as discriminant will have

Ostmlf1 ¼ Oððjþ nÞcÞÞ ¼ Oðjc þ ncÞ ¼ Oð1Þ þ OðncÞ

Here the number of input parameters are j environment variables
and n houseId flags. Although we require only one algorithm but
since houseId flags increase with time the complexity of the system
is worst than STLF as long as gama > 1.

The third model is STMLF with k house attributes used to model
the load. The worst case analysis for this model is:

Ostmlf2 ¼ Oððj� kÞcÞ

That is the forecasting engine’s time increases with increase in
number of house parameters and environment variants but the
number of houses do not effect the running time of the algorithm.
Since both k and E are constant for a system:

Ostmlf2 ¼ Oððj� kÞcÞ

This means that this model is not affected by number of houses
in the system. As can be seen from the ANN illustration in Fig. 4,
STMLF modeler builds a model using the k attributes. If we increase
the number of houses, the modeler will still have only k parame-
ters to learn. On the other hand if we have only one house even
then the modeler will have k attributes to learn. This means that
the modeler will have similar complexity of learning irrespective
of the number of houses.
4. Experimental setup

This section discusses the experimental setup for our experi-
ment. First our forecasting engine is described followed by the
measures used to assess the effects of STMLF and richer data for
forecasting. We will then discuss anthropologic and structural data
that was collected for this experiment.
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4.1. Forecasting engine

We discuss in Appendix B in detail the issues with existing fore-
casting methods for forecasting in a multivariate environment. The
issue is with building a multidimensional model in higher dimen-
sions. Secondly, our focus in this paper is to show the efficacy of
our modeling paradigm and effects of richer data on forecast. For
this reason we select the two base forecasting algorithms which
are used for forecasting namely regression and neural networks.
It is easy to see that since most of the state of the art forecasting
engines are extensions of these two basic engines a proof of in-
creased on the archetypical engine implies effectiveness of STMLF
with richer data for the enhancements as well. For neural networks
we use the basic resilient back propagation algorithm of ANN pro-
posed by Riedmiller and Braun [27].

The forecasting engine is constructed in Matlab. A three layered
back propagation neural network is trained on three weeks of data.
ANN consists of three layers, input layer consisting of 60 neurons
representing the input in layer 1(L1). Second layer (L2) consists
of 20 neurons. The output layer only consists of single neuron rep-
resenting the forecast. The trained model is used to forecast the
power load for each hour for the next day.
4.2. Measurements

Measuring success for multiple individual forecasts is more in-
volved than measuring success of a single system. There are three
measures that are usually used for such systems. (1) precision, (2)
accuracy and (3) stability or certainty. These measurements are
more appropriate when measuring forecasts for multiple objects.
Traditional measures such as percentage error and even MSE is
not considered the most appropriate measures for numerous fore-
casted data as they can be over-influenced by some very bad exam-
ples and can overshadow a good forecast for majority of
population. For example, if consumption for a house is zero for a
particular hour then any forecast other than zero will be infinitely
erroneous if we consider percentage error. Similarly a forecast of
0.2 for a consumption of 0.1 will be hundred percent inaccurate
though the actual miss-forecast is 0.1. When we consider numer-
ous forecasts, the more appropriate measure is accuracy which
measures the number of wrong forecasts against the number of
correct forecasts. This will be discussed in more detail below.
4.2.1. Precision
Precision is the measure of how close we are able to forecast to

the actual load. To measure precision we use mean squared error
given by the following function:

MSEt ¼
Pn

i¼0jLi;t � Pi;tj
n

ð7Þ

where Li is the observed load and Pi is the forecasted load.
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4.2.2. Accuracy
Accuracy is the measure of how many correct forecasts the fore-

casting engine makes. Correctness is a user defined parameter. It is
preferred to define correct forecast as a value within a percentage
range of actual load. However, for low loads, a percentage range
becomes insignificant. For a load of 0.1 kW h, a 20% range would
be 0.08–0.12 and a forecast of 0.2 will be considered extremely
wrong. However, practically a forecast of 0.2 will not be very
unsuitable provided that such loads are not majority of population.
To avoid this false loss of accuracy we have two scales to measure
accuracy. We set a 15% range of error for accuracy, but if load is
smaller than 3 then we consider range of ±0.5 kW h as range of
acceptable forecast.

So accuracy for time t is given as:

Acct ¼

P
1 þ

P
1

f8Pi;t > 3 & f8Pi;t 6 3 &

jLi;t � Pi;t j > Pi;t � 0:15g fjLi;t � Pi;tj > 0:5g
ð8Þ

Accuracy is specifically important measure for measuring suc-
cess over multiple forecasts.

4.2.3. Stability
The third measure of correctness is certainty or stability, that is

the variance in error. It is given by
Table 3
Results of three measures of forecast through multiple STLFs and STMLF. In addition aver
average load in that week.

Month STLF (with richer data) STMLF1

Var MSE Acc (%) Var MSE

Jan 5.53 2.29 51.2 7.31 3.39
April 3.08 1.10 49.0 3.69 1.57
July 2.62 1.12 62.1 4.86 1.12
October 3.39 2.61 48.9 5.26 1.92

Fig. 5. Mean squared error for four test weeks ((a) week of January, (b) week of April, (c
line is STMLF and red line is average MSE of all STLFs. Days of week are on X axis and m
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vart ¼
Pn

i¼1ðPt � Pi;tÞ2

n� 1
ð9Þ

Here Pt is the average forecasted load for time t.
4.3. Experimental data source

A survey over 204 houses was conducted in Eskistuna, a small
town 100 km from Stockholm, Sweden. The main goal of the sur-
vey was to collect structural data of the house and anthropologic
data of its occupants. In addition, these 204 houses were fitted
with AMR which collected power consumed at each hour. Weather
data was collected from local meteorological department for fore-
casting as well. The questionnaire collected from occupants con-
tained the questions discussed in Section 2. To represent the
seasonality and season specific patterns we conducted our experi-
ments over a 7 day period in each season. That is, forecasts were
made for a week of January, April, July and October to represent
the four seasonal variations.
4.4. Experimental environment

The simulations for the experiments described below were run
on a Intel core2 duo processor. The clock speed was 1.3 GHz with
age load of load for that week is provided to show a relationship between MSE and

STMLF2 (with richer data) Average load

Acc (%) Var MSE Acc (%)

36.4 4.23 1.59 59.9 4.21
35.2 2.7 0.93 52.5 2.21
49.5 1.93 0.62 65.0 1.12
37.6 2.69 0.95 54.7 2.61

) week of July and (d) week of October) comparing STMLF with multiple STLFs. Blue
ean squared error is on Y axis.
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2 GB of memory. Matlab’s Neural Networks Toolbox was used to
implement the ANN.
5. Results

The results in this section show the effectiveness of our pro-
posed modeling framework in combination with richer data
against the traditional modeling method with richer data and mul-
ti-load forecasting without the richer data. That is, it is a three way
comparison between STLF with anthropologic and structural data,
STMLF with global parameters only and STMLF with anthropologic
and structural data. Our claim is that STMLF with anthropologic
and structural data is a more robust technique and has a higher
accuracy than the other two methods.

To validate this claim we present here application of the three
techniques for forecasting house energy load using two different
forecasting engines: artificial neural networks and multiple linear
Fig. 6. Scatter plot of forecast against actual load for 7 day test period of January. The top
one uses house-Id as discriminant. In all figure actual load is on X axis and forecast is o
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regression. These two algorithms represent the archetype algo-
rithms for artificial intelligence and statistical analysis based load
forecasting. Furthermore, these algorithms satisfy the requirements
for STMLF. Detailed discussion on the needs of STMLF and its impli-
cation for selection of algorithms is discussed in Appendix B.

5.1. Measurements

We will first provide the measurements that we collected for
ANN experiments followed by discussion on interesting observa-
tions about our proposed method in comparison to the other two
methods.

5.1.1. ANN output measurements
For the three comparisons we use the artificial neural network as

shown in Fig. 4. The results in Table 3 lists the results of the three
measurements for correctness of algorithms. Here STLF with richer
Key:

Top plot

Bottom plot

Anthropologic
and structural data
based forecast

Control
experiment

X Axis Observed load
Y Axis Forecast

plot in each figure is forecast through structural and anthropologic data and bottom
n Y axis.
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data is the application of STLF for each house independently with
the anthropologic and structural. STMLF1 is the model where mul-
ti-load model is used but without the anthropologic and structural
data and STMLF2 is the multi-load model with the anthropologic
and structural data. As can be observed, STMLF2 outperforms STLF
and STMLF1. STMLF2 is as much as 10.8 percentage points more
accurate than STLF. In comparison to STMLF1 the difference is even
more pronounced. The difference in MSE for STMLF2 against STLF is
also significant particularly in seasons when average load is more.

5.2. Discussion

So far we have presented results of the three modeling para-
digms using two different forecasting engines. In this section we
will discuss some of the interesting results and show the effective-
ness of STMLF2 over other two methods through these results.

5.2.1. Stability of STMLF2 against STLF
Fig. 5 shows the daily MSE values for STLF and STMLF2 for each

of the 4 weeks. The graph shows interesting trend in that STMLF2

results are more stable than STLF. Over the same week STLF can
be as accurate as STMLF2 or can have MSE twice to that of STMLF2.
For critical energy systems such volatility in forecast is highly
undesirable since it becomes difficult to reduce error if the error it-
self is highly unpredictable.

5.2.2. Adaptability of STMLF1 against STMLF2

Fig. 6 shows scatter plot of STMLF1 and STMLF2 against the ac-
tual load for the week of test in January. As can be seen, the fore-
casts of STMLF1 are in a narrow band. This validates our original
claim that house Id is insufficient for discriminating loads. Since
STMLF1 does not have sufficient measures for discriminating house
loads, it forecasts close to average for all the houses as can be seen
in the scatter plots providing the benefit of using anthropologic
and structural data for house load forecasting.
6. Conclusion and future work

In this paper we have first introduced autonomic demand side
management (ADSM) as a paradigm to provide DSM and DR in mi-
cro-grids. We have identified forecasting of individual user’s load
as an important cog for ADSM and have attempted to answer
two important questions for making this forecast. The first ques-
tion is:

Do current STLF models and techniques work appropriately for
forecasting individual households or are adjustments needed in mod-
eling paradigm for forecasting individual consumer loads?

We found that the STLF model has some shortcomings in fore-
casting loads of individual consumers. STLF models are built to fore-
cast for monolithic or single load forecasting. To forecast for
hundreds of thousands of loads, an STLF will be required for each
load. This posses a scalability problem. To overcome this shortcom-
ing, we proposed a short term multiple load forecasting (STMLF)
model which combines individual load time-series into a succinct
model for forecasting many loads with a single model. Even more
so we showed through our results that STMLF is up to seven per-
centage points more accurate than individual short term single load
forecasts for each load. Furthermore, we identified techniques (ANN
and SVM) which can compute forecasts based on STMLF model. For
our experiments we used a basic ANN algorithm to prove the effect
of anthropologic and structural data over STMLF. As future work this
ANN engine can be replaced with more sophisticated ANNs to in-
crease efficiency of forecast. Our second question was:

Do the anthropologic and structural variables enhance the fore-
casting accuracy of individual consumer loads?
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We showed through experiments that a combination of anthro-
pologic data and structural data of houses can greatly enhance
forecasting of individual consumer’s load when used with STMLF.
This richer data within STMLF framework can reduce error by up
to 50% in some cases. However, we did not co-relate the specific
questions with the efficiency of the system. A more detailed anal-
ysis of effect of anthropologic and structural data over forecast
accuracy is required.

As future work we outline three direction. First is to study use of
other forecasting engines within our framework. Second is to study
in detail the impact of data over the forecast. Third is explore the
relationship of price and demand as correlated with house level
DSM and DR within the ADSM architecture.

In conclusion, we recommend short term multiple load forecast-
ing and use of anthropologic and structural data for smart grid appli-
cations where highly accurate behavior of individual consumers is
required such as in demand response and demand side management.

Appendix A. Motivation and need: autonomic demand side
management

In the traditional grid, short term load forecasting for a com-
plete aggregated system is sufficient. The demand in grid is an
aggregation of consumptions and individual loads within this
aggregated demand tend to average out the total demand. Thus
there are usually no sharp variations in demand when the grid is
considered as an aggregated load. However, smart grids, particu-
larly the concept of micro-grids opens up many avenues for effi-
cient energy management. It was anticipated that within micro-
grids demand response or other demand side management tech-
niques will be very helpful if implemented at a finer granularity le-
vel. To this end, demand side management (DSM) at one time had
been dubbed as a revolutionary measure for energy saving. But it
has not delivered much. It is estimated that maximum saving
through DSM is no more than 5%. Some of the reasons identified
by Kim and Shcherbakova are response fatigue, availability of tech-
nology, satisficing behavior in switching patterns, and consumer
knowledge [20]. Here we will discuss how concepts of micro-grids
when entwined with autonomic computing can mitigate the issues
of demand response in an efficient and accurate manner.

Autonomic computing is the vision of a class of computing systems
which will manage themselves in accordance with high-level objec-
tives specified by human. The goal is to make systems intelligent en-
ough to handle their optimization, configuration, healing and
protection mechanisms on their own. This is to mostly relieve the hu-
man operator from the mundane administrative tasks. Additionally,
research in autonomic system has realized systems which go beyond
just helping the human administrators. The state of the art autonomic
systems through their intelligence provide solutions which were not
possible with human operators. We see application of autonomic
computing for DSM as an obvious choice. For example colorpower
proposed by Ranade and Beal [26] implements a demand response
program in which users mark their devices according to their priority.
The proposed system then implements the demand response pro-
gram over the entire population according to its calculations in such
a way that the energy usage is fair and reduction in load corresponds
to the shortage of energy. Similarly Javed and Arshad proposed AdOpt
which manages usage of air-conditioning units to reduce supply–de-
mand gap whilst maintaining service level guarantees promised to
users [18]. Both of these systems allow a more crisp control of device
usage by user and energy modulation by utility provider. This is a
marked improvement over user driven DSM program or automated
blanket load shedding programs are not possible without explicit
computing support.

However, such autonomic applications for DSM in micro-grids
are very rare. There are a few autonomic applications being devel-
in smart grids: An analysis on use of anthropologic and structural data and
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oped for controlling energy of a house [22]. But the scope of these
applications is limited to a house and do not span to the micro-grid
level. Though managing energy of a house is a valid goal, our results
and practical concerns show that managing of energy at micro-grid
level can be much more effective. Renewables and distributed gen-
eration integration at a micro-grid level is much more feasible. Also,
DSM within a house has very little elasticity to play with. All one can
do is make sure that most energy is coming from renewables of the
house. Integrating energy needs and supply across a neighborhood-
level micro-grid would increase the flexibility and thus result into
better optimization of energy demand and supply.

Autonomic DSM architecture: implementing autonomic behavior
is more involved than proposing a planning technique alone. This
was found by researchers in autonomic computing as well and to
mitigate this problem a comprehensive MAPE-K architecture was
proposed to control the managed element [19]. This architecture
has four modules: Monitoring, to monitor the managed element,
Analysis to analyze if the managed element requires some correc-
tion, Planning to plan the corrects and Execute to implement the
plan. A knowledge base spans the four modules.

We incorporate autonomic computing for DSM using this tradi-
tional autonomic computing architecture. Fig. 7 shows a MAPE-K
loop over a managed micro-grid neighborhood. Here the neighbor-
hood is the controlled element. The task for each module is shown
in the box.

The aforementioned techniques of colorpower and AdOpt form
the planning module. But both these techniques require an analy-
sis of the managed system. This analysis at the least entails a fore-
cast which can be used to construct the plan. Without this
forecasting the autonomic system would not be able to plan for
better optimizations. In this paper we present our experiments to
construct such a forecast which can be used by colorpower or
AdOpt or any other autonomic planner for constructing a plan for
targeted DR or DSM in a micro-grid.

Appendix B. Short term forecasting techniques for STMLF

There are three concerns that we have for using a forecaster for
STMLF. First it should be able to handle at the least k input param-
eter. Our results show that this k should be significantly large to
Fig. 7. Autonomic demand side management arc
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distinguish between house characteristics. Second, as is shown in
Section 2, significant portion of our forecasted data is far from
mean. Therefore, the forecasting technique should not ignore or
suppress outliers. Third, the technique should be able to handle a
highly volatile system since consumers loads are highly volatile
as discussed earlier.

Now we will discuss various STLF techniques in light of STMLF
requirements stated above and discuss which techniques can be
used for STMLF. This discussion is important in identifying the fore-
casting engine that we use for STMLF since many existing forecast-
ing techniques do not support the computation required for STMLF.

Load forecasting historically has been used to forecast large
scale monolithic systems such as power loads of a city or region
or cost of energy in a market. There are three fundamental tech-
niques which have been applied for such forecasts for a single sys-
tem: (1) statistical techniques focused on smoothing and averaging
such as regression [24], exponential smoothing [8], Kalman filters
[17], and stochastic models [29], (2) time series methods such as
linear univariate model [9], ARIMA [3], Hagan and Behr [15], in
combination with econometrics model [10], GIGARCH [12], GARCH
[13] and hybrid models such as combination of ARIMA and GARCH
using wavelet transform [28], and (3) AI techniques such as ANN
[16], ANN with radial basis function [21], pattern recognition-
based techniques [11], expert system-based techniques [25], parti-
cle swarm optimization [2] and fuzzy system-based techniques
[30].

Recently due to prevalence of smart grid ideas research has
been focused on STLF for small scale systems. STLF for small scale
systems is proven to be a much harder problem than for a large
scale system as has been explained by Amjadi and colleagues [4].
Amjadi and colleagues and [4] and Gurguis and Zeid [14] have pro-
posed solutions which work better than the standard STLF for a mi-
cro-grid or building level granularity. However, the accuracy of the
system still does not match those of a large scale STLF due to vol-
atility of underlying system.

We will look at each of the three classes of algorithms to iden-
tify methods which can be used for STMLF and also point out the
reasons why an algorithm is not usable for STMLF.

We see that most of statistical techniques are not applicable
for STMLF for two reasons. First, these techniques are based on
hitecture for intelligent DSM in micro-grids.
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Table B.4
Mean squared error (in kW h) for 9 day STMLF using
multiple linear regression.

Day Mean squared error

1 2.72
2 2.70
3 2.51
4 2.43
5 2.53
6 2.53
7 3.23
8 3.42
9 2.56
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smoothing data around mean. As we have shown in Section 2, for
large, highly volatile data-set, mean is not a good forecast. Regres-
sion, exponential smoothing and Kalman filters thus are not appro-
priate for such forecast. Secondly, most of the techniques are not
capable of handling higher input dimensions required for the fore-
cast. This is true for the above methods and the stochastic technique
presented in [29]. To prove our first claim we used multiple linear
regression (MLR) for STMLF since MLR is able to cater the k dimen-
sions in its model. As expected, the forecast has a high error rate. Ta-
ble B.4 shows the mean squared error (MSE) value for each of the
9 days of experiment. The results showed a high MSE with average
MSE of 2.73 and for some day as high as 3.42. For a value in the range
of zero to fifteen, such a value is relatively very high.

It is well known that time series analysis techniques are neither
scalable to higher dimensions nor are effective in highly volatile
data [6]. Usually time-series analysis are limited to 4 or 5 input
variables which is insufficient for our requirements. For this reason
time series methods such as linear univariate model [9], ARIMA [3],
Hagan and Behr [15], in combination with econometrics model
[10], GIGARCH [12], GARCH [13] and hybrid models such as com-
bination of ARIMA and GARCH using wavelet transform [28] were
not considered for STMLF.

In comparison, AI technique such as artificial neural networks
through their hidden layers and SVMs through their projection into
hyper-dimensions, seem much more capable of solving an STMLF
model. These techniques are able to identify hidden trends thereby
finding the similar trends in different time series. Furthermore,
ANN and SVMs are proven to be scalable to the dimensional needs
of STMLF. However, their ability to handle such a volatile data set is
still unknown. In next section we will discuss use of ANN for exper-
imentation comparing STLF with STMLF and quantifying effect of
anthropologic and structural data over consumer load forecasting.
In summary we believe that from the existing short term forecast-
ing techniques only AI methods with ability to scale in input
dimensions are applicable for STMLF.
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