
Self-Calibration: Enabling Self-management in Autonomous Systems by Preserving
Model Fidelity

Fahad Javed, Malik Tahir Hassan, Khurum Nazir Junejo, Naveed Arshad, and Asim Karim
Dept. of Computer Science,

LUMS School of Science and Engineering
Lahore, Pakistan

{fahadjaved, mhassan ,junejo, naveedarshad, akarim } @lums.edu.pk

Abstract—Autonomic and autonomous systems exist within
a world view of their own. This world view is created from
the training data and assumptions that were available at their
inception. In most of these systems this world view becomes
obsolete over time due to changes in the environment. This
brings a level of inaccuracy in the autonomic behavior of the
system. When this degradation reaches a certain threshold self-
healing or self-optimizing systems generally recreate theworld
view using current data and assumptions. However, the self-
optimization process is akin to kill a fly with a hammer for
minor tuning of the world view. Instead we propose the idea
of self-calibration for self-managing these systems. We define
self-calibration as the ability of the system to perceive the need
for and the ability to execute minimal tuning to bridge the
gap between system’s world view and incoming information
about the outside world. In this paper we present a case for
considering self-calibration as a self-* enabling property of
systems specifically for time-critical systems using data-centric
AI technologies. We present our case by discussing three case
studies from different domains where self-calibration enables a
system to become self-healing or self-optimizing. We then place
self-calibration in a generic system and explicitly describe the
types of systems in which self-calibration can be implemented
and the benefits that one can accrue from its inclusion.

I. I NTRODUCTION

Autonomous intelligent systems in general create a world
view to reason, analyze and plan their actions. This world
view, or system’s internal model, is created from various
sources including the training data, assumptions, and mod-
eling artifacts available at time of inception. It is accepted
that this world view is an approximation of the actual world
in which autonomous intelligent system exists. Furthermore,
as the world evolves over time accuracy of representation of
this model is expected to drop.

Our interest is to maintain an appropriate model of the
world despite the changes in the world so that autonomous
system operates accurately. Online models are a solution
for such problem [6], [17]. However, for a range of time
critical applications such as spam filtering, demand response
systems in smart grids, web 2.0 data handling etc., online
algorithms are not suitable due to various factors. These
factors primarily are concerned with response time and scal-
ability issues with respect to size of data and its dimensions.

For these time-critical systems, the state of the art is to
model offline and later use this model to make its real-time
decisions. But this brings us back to the issue of timely
adaptation to changes in the world.

A possible way to solve this problem is to make the
autonomous intelligent system self-managing so that it main-
tains fidelity of its model with the world. Based on the
system’s operations this can produce self-healing or self-
optimizing or even self-protecting properties in the system.
But if we look at this task through the generally accepted
self-* definition or analyze operational requirements to
maintain model fidelity we see that this task is subtly differ-
ent from self-healing, self-optimization and self-protection.

As we will argue in section II, the task of maintain-
ing model fidelity is more akin to intelligent, automatic
calibration of system than the task of maintaining health
or optimizing system’s performance or protecting system
from threats. Though this task of maintaining model fidelity
results in a self-healing or self-optimizing system, the task
is inherently different from the accepted norms of traditional
self-* properties.

We can also compare this task to adaptive control. Adap-
tive controls or self-tuning controls calibrate their controllers
according to the changes in environment. For instance, a
common example is the adaptive control of an aircraft. The
parameters to control an airplane are dependent on weight
of the plane. But as the plane flies, it’s weight changes
due to consumption of fuel. Adaptive controllers adapt their
working by observing the system and correcting themselves
due to change in environment. Adaptive controllers such
as model reference adaptive controller (MRAC) calibrate
the base controller against a reference model to correct the
system errors due to environmental evolution.

In various applications, however, standard controllers are
not applicable and other intelligent computing solutions are
applied. For these systems, calibrating of the controller or
the autonomous manager is not well defined according to
our study.

In this paper we present this concept of self-managing
calibration or self-calibration for data-driven time-critical
systems. We provide an abstract system definition and de-



scribe ways to achieve self-management of model through
self-calibration in this abstract system. In addition we de-
scribe two architectures to implement self-calibration inthis
abstract system. To ground the problem we provide case
studies from three different domains- web 2.0 application,
spam filtering, and sensor networks- which benefit from
use of self-calibration. Our contributions in this paper are
(i) We describe how self-management of a model can be
achieved through self-calibration in an abstract system. (ii)
We define two architectures which can be used to engineer
self-calibration in the class of systems we consider in our
scope. (iii) We provide case studies to ground the generic
system in concrete examples.

The paper is organized in the following way: Section
II discusses the reason for proposing self-calibration. We
follow this we definition of self-calibration in section III. In
section IV we describe an abstract model to position and
define self-calibration. Section V describes the process of
incorporating self-calibration in the abstract system. This is
followed by case studies, future work and conclusion.

II. M OTIVATION

A range of time and content driven autonomous intelli-
gent systems such as spam filtering software, forecasting
engines, online tag recommendation, etc. are based on off-
line learning algorithms. Here by content driven engine we
mean systems where operations, goals or primary services
are dependent on and driven by content. In these systems the
costly step of model creation is done off-line and decisions
are made during execution using this model [12], [13], [14],
[15]. Since the content changes over time, the static off-line
model becomes obsolete after some time resulting in drop
in correctness of the system. On the other hand, current
online algorithms are not viable due to time constraints,
or scalability issues with respect to large variable space or
data size. There are two measures of concern here: accuracy
and efficiency. Accuracy is the measure of correctness of
system and efficiency is the measure of how the system
operates. This includes response time, resources utilized,
etc., Whereas an off-line model affects the accuracy, online
models affect the efficiency of the system.

We observed that the degradation of system is dependent
more on the model’s ability to reflect the world adequately
and less on time passed since the inception of the model.
The accuracy of the system remained healthy while the
distribution of knowledge in input stream was similar to
the knowledge of training data used to create the model.
But degradation results in some cases quite rapidly when
knowledge obtained from the input stream diverges from the
model [12], [15]. This evolution of the world is the major
cause of degradation of service.

There are two characteristics of the effect of world evo-
lution on the system and its model.

• First, the fall in accuracy is usually due to a small subset
of misclassified new knowledge about the environment.
At any given time multiple small subsets may affect the
correctness of the model.

• Second, the fall in accuracy is based on evolutionary
changes and occur with unpredictable frequency and
size. Usually in a large system many small scale
changes occur and if self-awareness is only tuned to
total system efficiency then these small scale changes
go under the radar.

In such systems, we have seen self-optimization [11]
or self-healing [14] as a possible solution. However, self-
optimization, or self-healing, properties by their very defini-
tion are not able to respond effectively to the evolution of the
world [4], [16]. Self-healing is the property of system to heal
itself against bugs or failures. A self-healing system may be
able to identify a drop in efficiency due to partial failure of
model. But a deviation of real world from system’s world
view cannot be categorized as a failure of system specially
if individual deviations are too small to warrant action in
the total system. Secondly, self-healing techniques try tofix
a problem but here the goal is to adjust model to improve
efficiency as compared to restoring some property which
was lost due to a bug or a failure.

Self-optimization seems like a more appropriate property
but self-optimization is not geared to sensing failures to
correct but is rather looking for ways to improve perfor-
mance. Usually self-optimizing systems either try to main-
tain a threshold of performance or periodically check for an
opportunity to improve their performance. For a large scale
system where multiple small scale inflow are happening,
neither of the methods can capture the error and fix it. If
a threshold is being maintained then it is possible that a
number of inflow have made the model quite obsolete by the
time threshold is reached. This will necessitate a complete
or atleast a major relearning of the model. In case periodic
opportunity for optimization is checked then it may happen
that between two epochs major changes occur and again
model is sometimes changed beyond repair. We will discuss
these issues in more detail with respect to the system model
in section IV.

Our argument is that, since the downgrade of correctness
is due to minor changes in some parts of the world, the
solution to these shortcomings should also focus on ac-
commodating these changes by minimally tuning the model
locally. This will make these adaptations efficient enough to
update the model at runtime resulting in a more accurate yet
scalable system.

III. D EFINING SELF-CALIBRATION

To undo the effects of these evolution-induced changes,
we explored calibration of system when the system model
and the sensors capturing the state of world do not match.



Calibration is defined as:

Definition 1. A minimal tuning, filtration, or characteriza-
tion of raw information about the system’s environment to
reduce the gap between system’s world view and the actual
world.

Calibration is referred to as the process of adjusting
system to remove systematic errors in sensor readings. The
term has also been used to refer to the procedure by which
raw outputs of sensors are mapped to standardized units
[7]. Various engineering and professional disciplines use
calibration to adjust their instruments’ model in a new
environment. In essence, when the internal model of the
system and it’s sensor readings are out of sync, calibrations
are done to adjust the differences in model and sensors.
In sensor networks, robotics, and computer vision, such
calibrations are needed when the system is deployed in a new
environment. There are automated methods for calibration
but the process is explicitly initiated by the user deploying
the system and is done once for an environment [21], [24].

Autonomous systems in contrast very rarely change their
physical or operational environment. However, such systems
are faced with the problem of an evolving environment
where new terms, tags, devices, etc., are added, replaced,
updated, and removed frequently. Bychkovskiy and col-
leagues argued that calibrations can be a good solution
for autonomous systems [7]. But, there are two aspects
of autonomous systems that contribute in making simple
calibration a complex task.

First, for traditional calibration, it is explicitly initiated at
a certain time in the life cycle of device. This is not possible
for online autonomous systems. Calibration in these systems
is a tool to handle changes over time. As we will show in
our case studies the need for calibration is unpredictable
at design time. Thus we can not define a specific point in
time in life cycle of system where calibration will take place.
Rather we would have to intelligently identify when we will
calibrate the system.

Second, usually there are numerous variables, sensor
streams, and tuning parameters in an autonomous system.
Deciding how to effectively calibrate the system is a non-
trivial task.

To execute effective re-calibration of such system we
propose self-calibration as a desired property of time and
content driven autonomous and autonomic systems.

We define a self-calibrating system as:

Definition 2. A system which is able to:

1) Identify the need for calibration by intelligently
observing relevant raw information and the internal
constructed system’s world view

2) Instrument appropriate calibration actions on the sys-
tem to minimize the gap between system’s world view
and the actual world.

That is, self-calibration is an ongoing process in which
system first identifies the point where system model and
actual world diverges from each other. It then initiates
processes to reduce this gap whenever and however pos-
sible. This property as is evident from definition and its
application, is not a goal in itself like self-optimization
or self-healing. Rather it is an enabling property which
supports efficient self-healing and self-optimization by using
observational traits of self-healing and self-protection. This
ultimately helps in planning and executing a boost in effi-
ciency to provide self-optimization property to the system.

A. Desirous Attributes

Based on the definition of self-calibration we argue that
following attributes are required to achieve self-calibration.

1) Situateability: First and foremost, the system should
be able to situate its data with respect to its model.
For autonomous system, the system model is the
description of its world. But the real world generating
the input stream may have changed since the inception
of system model. An autonomous system requires a
sensor/analyzer to situate its model with respect to
the input stream to identify error in the data-stream,
sensor, or the model.

2) Input Stream Transformation: System should be
able to regulate its input stream to protect its model,
correctness or efficiency from temporary events in
the world such as data burst or spikes. For example,
the personalized spam filter discussed in section VI.2
needs to identify if the updated model is required or
not.

3) Model Transformation: System should be able to
update its model to incorporate changes in the world.
This model transformation should reduce the distance
between system’s internal model and the observations
from the world. The model transformation should be
minimal to reduce the overhead of self-calibration.

4) Metrics and Thresholds: System should have metrics
to evaluate data fidelity as a temporary event or a
valid change in the world. System should be able
to use these metrics and thresholds to trigger input
stream transformation, or model transformation. Met-
rics should also identify when self-calibration will fail
and model regeneration will be required.

We define a system that fulfils the above mentioned
requirements as a system with self-calibrating property. That
is, a system is self-calibrating if it is able to analyze and
compare its internal model with the world and tune data
and/or model to bridge the gap between system’s world view
and incoming sensor input stream.



IV. A NALYTICAL MODEL

In this section we describe the abstract system and its
property to reason about self-calibration. This will help us
define generically, the types of system models which can be
made self-managing through self-calibration. We also define
boundaries for its usage under the scope of this paper.

First, we build a generic system and world abstraction.
Then we will place the performance measurements of inter-
est within the scope of this abstraction followed by definition
of self-calibration in this generic world.

A. System Model and Notation

We build on the abstract model proposed by Berns and
Ghosh [4]. Whereas they restricted their model to system
components, our discussion necessitates abstracting the liv-
ing and breathing world in which our system operates.
We represent this world asRa. For our system this world
produces a set of observationsrt at time t and an output
outa that we can represent as:[rt, outa] ⇐ Ra(t).

An autonomous system tries to capture these observations
and replicate processes inRa(t) to generateouta. That
is the system is given as:[outs] ⇐ S(rt). Here S is
the autonomous system,rt are the observations fromRa

observed through sensors ofS andouts is the system output
to replicateouta.

InternallyS maintains a stateXi. This internal stateS =
{Xi} represents the system and transitions non-linearly over
time.Xi has three possibilities:Xi ∈ {C∪F ∪D}. C is the
set of sound or correct state,F is the set of faulty state and
D is the set of transient state degraded states. These states
are roughly modeled on the survey of self-healing system
by Ghosh and colleagues [10].

The state in turn is composed of system modelM s and
internal state variablesxv. That is:Xi = {M s, xv}. As part
of state, the system constructs a modelM s

t which attempts to
construct the worldRa using historical trace of observations
from some timet − γ till t.

M s
t ⇐ train(rt−γ ..rt)

We would now discuss the worldRa and its hypothetical
working. It can be argued thatRa builds its output based
on some modelMa for every timet. As an external entity,
we do not know of this model and can only infer it through
learning its historical outputs and observations. Hence we
can only approximateMa

t through some modelM s
t .

This modelM s
t is our best way of capturing the working

of world Ra. Online algorithms continually update their
model M s

t based on their observations as is the case of
model adaptive control. However, in offline systems this
model is not constructed continuously. That is,M s is created
at discrete times and same model is carried over till next
model creation is initiated.

Possibly infinite modeling paradigms exist to model the
world. However, for the scope of this paper we classify

two types of models (Ma) of the world (Ra) which are
relevant to the type of systems we are working with. First is
a singularity world which is based on a single phenomenon.
By singularity we mean phenomenons which represent a sin-
gle possibly complex system such as controlling an aircraft
control planes or forecasting energy load of a system. Self-
calibration is well defined under the title of adaptive controls
for these systems in literature of control theory and time
series analysis. We do not see a need to revisit or reform it
to our scope or define such system in our generic definition.

In comparison a constructed world is an aggregation or a
composition of multiple sub-components under a single en-
vironmental or operational assumption. In such constructed
world many components combine or contribute to form
Ra. In these systems many independent sub-models or sub-
component contribute to formMa. If we define domain of
Ra as the total space world occupies then each component
k of the world would represents a sub-space such that:

Ra
∑

k

kRa

Here superscript prior to variableR represents thekth

component ofR. When we try to approximate such world
model asM s

t then we see thatM s
t can be in a continuum

between generalizational and compositional models which
we define as under.

Compositional models try to model the sub-spaces of
Ra. These sub-spaces are modeled and combined to form
the total system. We can say that the system modelM s

t

is sum of j componentsM s
t =

∑

j

jM s
t such that a sub-

model jM s
t models one or more components of spaceRa.

In application parlance, this is akin to clustering of data or
maintaining an ensemble of classifiers where a cluster or a
single classifier representjth component ofjM s

t .
In comparison,generalizational models are those in

which M s
t is an approximation or generalization of itsj

components i.e.M s
t ≈ ∀jjM s

t with some discriminative
method to differentiate betweenjRa regions. We can also
conversely say thatjM s

t is a specialization of a generic
model M s

t where M s
t represents the total worldRa and

jM s
t represents thekth component ofRa.

It can also be visualized as a system where there arej

subsystems with some commonality among them. The total
system is an average output of each of the independent
subsystem and is constructed in a way so thatM s

t is an
average of the entire system.

For these systems When we simulateM s
t under obser-

vations of jth component (jra
t ) then it produces output

joutst appropriate for thejth component. An example of
generalizational model is our spam filtering case study
where each mailbox is a component. Global spam filtering
constructs a model for all the mailboxes (or senders) through
a unified corpus of labeled data. This global spam filter



models all mailboxes to a certain accuracy level.

B. Measurements

It is imperative that the system is observed and measured
to verify if it is achieving its intended goals. For this purpose
both functional and non functional measures are of interest
to ascertain the health and effectiveness of a system. We
may evaluate a system through a functionρ which calculates
instantaneous performance at timet given asPt.

Pt ⇐ ρ(Xi, rt, outst , outat )

This performance is based on overall system state and in
most cases the input stream (rt). There are three important
components ofPt that are of interest to us. First and
foremost is accuracy that we can quantify as:

accuracy = |outa − outs|

The second measure is of safety and liveness to measure
health of the system. We use Alpern and Schneider’s defi-
nition of the terms [2]. A system may haveY safety andL
liveness properties. Informally safety property implies that
“bad things never happen to the system” and liveness implies
that “good eventually happens”.

The third important measure is performance which can
be measured as response time of system or as resource
requirements to achieve some quality requirement. Measur-
ing performance in abstract system is not feasible due to
limitation posed by abstractions. However, we will discuss
effect of self-calibration on performance in our case studies.

C. Self-Calibration

We describe self-calibration in our abstract world. A
description of other self-* properties in similar context can
be found in [4]. We define self-calibration as a function
selfCalib of modelM s and input streamr0···t. According to
our definition of self-calibration, it is the minimal tuningof
model or input stream to reduce disparity between system
model and actual world. That is:

(M s
i+1, r

′

t) ⇐ selfCalib(M s
i , rt)

such that|M s′

i+1−Ma| < |M s
i −Ma|. That is,selfCalib is

a function that reduces the distance between the real world
model and the system’s model.

This in itself is not a critical property of a system like
self-optimization or self-healing. But as we have shown
previously, it enables self-optimization and self-healing in an
efficient manner. Next we will discuss how we can engineer
self-calibration in the abstract system.

V. ENGINEERING SELF-CALIBRATION

In the previous section we have described an abstract
world for discussion on system and world model and def-
inition of self-calibration. In this section we propose two

(a) (b) (c)

Figure 1. Venn diagrams showing sets ofouts andouta for (a) timet (b)
time t+ i and positive and (c) negative and positive changes from timet to
t + 1. negative is shown colored grey and positive is shaded with vertical
lines.

architectures to implement self-calibration for compositional
and aggregational models.

Autonomous data-driven time critical systems create a
model to reason about the world around them to make
decisions. The goal is to mimic world modelMa as much
as possible in the internal modelM s. Though this modeling
may not be perfect but correcting this error is beyond the
scope of this paper. Our focus in this section are architectures
to handle the issue that arises when evolution in world
increases the gap betweenMa andM s over time.

We illustrate our point through venn diagrams in figure
1. This system represents a binary classification where set
A represents output ofM s and B represents output ofMa

at time t in figure 1(a). Without loss of generality we can
extend this model to multi-dimensional domain and multi-
variate decision making.

The error of the system, by set expression is:

errort = (B − A) + (A − B)

At some timet+ i, Ma evolves into C as shown in figure
1(b). the error att + i is represented as:

errort+i = (C − A) + (A − C)

Here we are interested in positive change in the error or
∆error which is shown as shaded region in figure 1(c). This
in essence is the error that did not exist at timet and is
caused due to evolution inRa. The expression is:

∆error =
(

C−(A+B))+((A+B)−C−(A−B)−(B−A)
)

Self-calibration specifically focus on the harmful effects
of the evolution and not consider the positive changes due
to it. As can be seen in figure 1(c)), the shaded region
is a positive change in system’s output due to evolution.
If we consider total system performance or accuracy then
we may not see much change. But if negative affects of
evolution can be captured and fixed as they occur then this
can save us from larger and costly wholesale corrections
later in the life of system as is the case for self-optimizing
tag recommendation [11].

Thus the goal of self-calibration is to reduce∆error.
We propose two architectures which can achieve self-
calibration in such systems and result in self-healing or
self-optimization of the over all system. The selection of
architecture is dependent on the nature of system, existing



autonomous management algorithm and the flavor of self-
management required.

There are two tasks of self-calibration, first is to identify
when calibration is needed and second is to instrument the
calibration. In this discourse we will identify the point at
which calibration is needed and object on which calibration
needs to be done. The actual method of calibration is domain
specific. This will be discussed with more details the in case
studies.

A. Architecture 1: Sub-model Self-calibration (SMSC) for
Compositional Models

Our first architecture is for systems constructed for a
world Ra which is composed ofk components such that:

Ra =
∑

k

kRa

Figure 2 represents such a system. HereRa is segmented
internally into k segments. An autonomous system ideally
would identify each region and map it to its internal sub-
model jM s

t . Combining alljM s
t sub-models will cover the

domainRa. This modeling may have error such as incorrect
mappings and overlapping regions. resolving this error is
beyond the scope of self-calibration.

The goal of sub-model self-calibration (SMSC) architec-
ture is to autonomically calibratejM s

t with kRa as kRa

evolves over time in ways similar to an airplane’s controllers
adapting to its evolving environment. The goal is to maintain
fidelity of of jM s

t with kRa.
To identify what and when to calibrate we will look

at ways to quantify distance ofRa and M s
t . For such

systems we can say that the distance betweenM s
t andMa

t

is equivalent to distance between pairwise sub-models:

|M s
t − Ma

t | ≡ ∀j|jM s
t − jMa

t |

If measuringjM s
t is not possible then we can approximate

it by measuring the output of sub-components:

∀j|jM s
t − jMa

t | = ∀j|joutst −
joutat |

For systems which transition smoothly we can extend this
measurement method of model health to time beyondt. that
is:

∀j|jM s
t − jMa

t+n| = ∀j|joutst+n − joutat+n|

Figure 2. Architectural design of compositional system model. Ra is
composed ofk components. System model attempts to identify thesek

regions and model it internally ask sub-models (kMs
t ). These model

compose to form the total system modelMs
t .

Note that this is true for sub-components models but not
for entire system as has been discussed above and shown
graphically in figure 1. Here we can see that though total
error for system may be less at timet + n than at timet.
But we can see that the error in sub-components can still be
observed and corrected.

We would like to point out that observing total error
of system does not provide the insight we need for self-
calibration.

|M s
t − Ma

t | 6≡ |outst − outat |

Suppose that gain in accuracy due to evolution is the same
as drop in accuracy. This would mean

|outst − outat | ≡ |outst+i − outat+i|

This will give the false impression thatM s
t is similar

to M s
t+i. However at component level the model would

have moved. In case-study 1 we discuss similar system
where without self-calibration we were not able to monitor
component level degradation. By the time system level
degradation was observed the model had already denigrated
so much that minor adjustments were not sufficient and
wholesale system re-modeling were required.

Through this type of calibration we maintain the safety
property that “bad things never happen to the system".
Through this system we can capture the system moving
towardsD state and recover it before it goes to unhealthy
state as described in [10].

B. Architecture 2: Reference Model Based Self-calibration
(RMBSC)

Reference model based architecture is designed for system
models (M s

t ) which are generalization of sub-system models
(jM s

t ). in these models theM s
t is an average or generaliza-

tion of the component modelsjM s
t . Conversely the model

(jM s
t ) is specialization of (M s

t ) which is a generalization of
entire system. Systems such as personalized spam filtering,
our second case study, is an example of such systems.

Previously generalizational systems used to maintain a
single global model. However, recent trend is to increase
accuracy by adapting local models for each entity that
combines to form the model. Though this increases system
accuracy, but it has the overhead of creatingj models. This
effort if done only once in life cycle may be applicable but
many adaptations at runtime are abortively costly.

To implement scalable adaptation of such systems we
propose architecture shown in figure 3. This model is similar
to MRAC with some differences that we will discuss here.
MRAC works on the principle that system maintains a refer-
ence model to correct evolution in environment. A controller
is designed with certain assumptions and boundaries on the
environment. When these boundaries are violated the model
updates the controller for the new environment.



Figure 3. Data flow architecture for Reference Model Based Self-
calibration . Data streamrt

s representing entire system is stored in data store
and global modelMs

t is created from it. Self-calibration decision maker
(DM) compares this model withjth component’s model and provides
control signal whether to create a new model forj component at this time.
The data stream forjth component is also stored in a local data-store. If
self-calib DM provides a positive signal then a newjMs

t is created and
passed to autonomous manager to make run time decisions.

RMBSC core is similar to MRAC. But unlike MRAC our
architecture provides a method to train the reference model
as well. This way the adaptation itself can be adaptable based
on the environment around it. There are two reason for this
extension. First, because in some situations it is required.
and Second, because we can do it.0.

Consider architecture in figure 3. The architecture repre-
sents architecture forjth sub-component. The task of the
manager here is to make decisions forjth sub-component
using modeljM s

t for incoming dataflow. This model may
be an adaptation of the generalized model for all thej

componentsM s
t . On a global level, a generalized model of

entire system containing data from all thej components is
maintained. This may be learnt model at timet+ i or a ref-
erence model depending upon the system. On some specific
triggers (e.g. construction of newM s

t ), M s
t is compared with

each ofjM s
t . Based on system goals, the distance between

jM s
t and M s

t is used to initiate an adaptation for selected
jM s

t . The adaptation algorithm then adapts the existingM s
t

using the local data ofjth component.
According to our assumption, system modelM s

t at its
inception is the best approximation of world modelMa

t

and no better model can be made with the resources and
techniques available. For all practical purposes we can say
that if model is created at timet then:

Since M s
t is a maximal approximation ofMa

t we can
write target of self-calibration system as.

M s
t ≈ Ma

t

According to definition of generalizational model we also
know thatM s

t is a generalization of components ofS. We
can thus say that:

jM s
t ∼ M s

t ≈ Ma
t

If we consider the error forjth component at timet, we
can use logic similar to previous case and state that:

jerrort = |jM s
t − Ma

t | ≈ |jM s
t − M s

t |

Using same argument at timet+i if we update our model
M s

t+i then we can say that:

M s
t+i ≈ Ma

t+i

Using this relationship we can compare thejth component’s
un-updated model toMa

t+i.

jerrort+i = |jM s
t − Ma

t+i| ≈ |jM s
t − M s

t+i|

This measure of distance of model ofjth existing compo-
nent with the best approximation of world model will give
us objective measure to evaluate when and what to calibrate
at time t + i.

1) When and What to Self-calibrate:There are two
variants of calibrating system based on core demands of
system. For a system concerned about quality of service
(QoS) we can set a threshold of healthτ such that when
distance of a sub-component breaches this threshold, re-
calibration of this component is performed.
|jM s

t − jMa
t | > τ

Another possibility is that we can limit the resource
utilization by putting a threshold at the number of cali-
brations that can be done in an iteration. In this method
the components are sorted according to∆error and topx

are chosen for calibration wherex is dependent upon the
available resources.

This type of calibration maintains the safety property that
“bad things never happen to the system". Moreover, through
this system we can capture the system moving towardsD

state and recover it before it goes to unhealthy state as
described in [10].

VI. CASE STUDIES

In this section we present three case studies of self-
calibration from varied domains. The domains vary from
automatic tag recommending web 2.0 application to spam
filtering to sensor networks. The goal of these case studies
is to present exemplar systems where self-calibration can be
helpful and provide examples of our proposed architecture.

A. Automatic Tag Recommendation

A folksonomy, or collaborative tagging, is a system of
classification of documents through collaboratively creating
and managing tags to annotate and categorize content [20].
The system allows its users to assign keywords, or tags, to
resources for navigation, finding resources, etc.

We proposed an automatic tag recommendation system
for folksonomy based on discriminative clustering [12].A
new document is first classified into a specific cluster and
the top 5 tags of the cluster are recommended as possible
tags for the document. The accuracy of the system however,



0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Example to be Tagged

F
S

co
re

Regular
Self−Calibrating

Figure 4. Comparison of cluster accuracy with and without self-calibration.
Red line shows regular results when system allows cluster performance
to degrade. Green line shows self-calibration results. It can be seen that
between example 5 and 10 self-calibration identifies a need for calibration.
After the calibration step accuracy of cluster is restored until 50th example
when another round of calibration is done

was affected over time. As new ideas and concept emerge
the tags and their relationships with documents also change.

To handle this accuracy drop due to distribution drift, we
proposed to rebuild the prediction model by re-clustering
[11]. To automate the task we proposed a self-managing
mechanism for this process. A self-optimizing system
though is able to keep a high level of accuracy, but such
massive re-modeling step is an overkill. Especially when
up to 65% of clusters remain intact and majority of the
system is not affected by clustering. This points to the
intuitive idea that over time not all information will change
but rather some relations between document classification
and tags would be re-ordered. What is required is not self-
optimization but minimal self-healing of system.

We found that a large number of documents were being
clustered correctly but the evolution of tags by users was
not represented in the system. We implemented architecture
1 in this scenario. Figure 4 shows resulting f-score with and
without self-calibration. The accuracy of cluster was 0.35
before example 5 (Y-axis value). Without self-calibration
the average accuracy goes down to 0.0197. However, self-
calibration restores the accuracy 0.329. In addition we
observed that this drop in accuracy, or its healing, did not
affect the global accuracy by much. Without healing global
accuracy was 0.1592 and with self-calibration it was 0.16.
Such a minor change in accuracy at global level was not
observable but at a sub-component level it was observable
and correctable. It is evident that self-calibration of system
can make the system self-healing.

B. Email Spam Filtering

Filtering spam mail or Unsolicited Commercial
Email(UCE) is an important task for mail service providers.
The process needs to be fast and effective. Due to this
reason spam filtering techniques usually build an offline
model on the data collected from users. Emails which are
already classified as spam and ham (meaning valid emails)
are used to train a classifier. This global model is then used
to filter spam emails.

However, as has been shown by Fawcett, spam and ham
email patterns shows concept drift [9]. This means that the
concept of what is spam "drifts" or changes over time and

between users. To show this figure 5 plots class conditional
probabilities of spam and ham for two users against the
term frequency of spam in the generalized model from
ECML data set [5]. Term frequency is the number of times
a term appears in an email. Different peaks and troughs in
figure 5 points to difference in terms which are considered
spam by different users.

To handle this concept drift among users, personalized
spam filtering was considered. A global corpus of emails
was used to train a global filter and this filter was adapted
according to user’s own email repository [15], [18]. This
results in 5.5% increase for task A and 10% increase for
task B in accuracy of spam filtering [15].

But this does not solve the problem of concept drift
over time. As can be seen from figure 6. Term frequency
for spam and ham changed between two time periods for
the same user. The problem can be resolved with repeated
construction of the global model and its adaptation for local
models but with hundreds of thousands of local models, such
adaptations were not possible.

We applied the second self-calibration architecture using
the global model asM s

t and individual mailbox models
as jM s

t . This resulted in objective way of identifying the
personal mail boxes which were most distant fromM s

t .
We applied a threshold such that only the worst 20% of
mailboxes were adapted at each iteration. This resulted in
minor drop in accuracy while it reduced our computing
resource requirement to one fifth.

C. Sensor Networks

Sensor networks present an interesting application for
self-calibration. The distributed nature of sensors and adhoc
and evolving world they work in makes self-calibration a

0 200 400 600 800 1000
 0.02

0

0.02

0.04
Difference of Spam Probabilities

P
ro

b
a
b
ili

ty
 D

if
fe

re
n
c
e

Term Id
0 200 400 600 800 1000

 0.02

0

0.02

0.04
Difference of Non Spam Probabilities

Term Id

Figure 5. Shift inp(x|y) between training and test data for ECML-A
dataset (individual user’s e-mails), whereyǫ{spam, nonspam} and x is
an email)

0 0.5 1 1.5 2 2.5

x 10
5

−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−3 Spam Probabilities

P
ro

ba
bi

lit
y 

D
iff

er
en

ce

Term Id
0 0.5 1 1.5 2 2.5

x 10
5

−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−3 Non−Spam Probabilities

P
ro

ba
bi

lit
y 

D
iff

er
en

ce

Term Id

Figure 6. Difference inp(x|y) for e-mails from different time periods for
ECUE-1 dataset), whereyǫspam, nonspam andx is an email



very interesting application in this domain. The concept of
calibration has already been used in sensor networks [7].

Here we will present two different types of sensor
networks and relate them with the architectures we pre-
sented. Furthermore, our proposed architecture can provide
these systems with extending their adaptation. Mainland
and colleagues propose Self-Organizing Resource Allocating
(SORA) sensor networks [19]. A similar work (DIRL) by
Shah and Kumar used an economic model as the global
model but had similar architecture [23]. In both systems each
sensor can assume different roles in the system. A sensor
can be active scanner, passive scanner, data aggregator or a
networking node. With a changing world it is impractical to
explicitly assign a specific role to each sensor. The proposed
systems propagate a central cost or economic model to all
sensors. Sensors use this model to bid on different actions
and through this auction mechanism each sensor assumes
the optimal role according to market forces. Whereas the
sensors in this mechanism are self-optimizing the overall
emergent behavior is self-healing as well.

Assume that a sensor goes offline. The remaining sensors
can then win in auction the responsibility of offline sensors
in the most optimal way.

If we consider incorporating the assumptions of DIRL
and SORA, we see an application of our second proposed
architecture (RMBSC). Both the systems are dependent on a
global model which can best utilize the sensor network. This
model is based on considering the generalization of sensors
to ascertain the most optimal mix of policies. In essence
this is creating aM s

t so that each sensor, orjth component
of system can adapt it to its local needs. Although it is
assumed thatM s

t will exist but both the system leave
its construction as assumption or as future work. RMBSC
provides a concrete architecture to incorporate modeling and
maintenance ofM s

t and provide tools for its propagation,
comparison and utilization.

This global model will require regular evaluation and on
each re-evaluation, sensors can decide if they wish to update
their role or continue in their current state.

Another flavor of sensor networks works by partitioning
the world according to its evolution such as the work
of Salazar and colleagues [22]. In this system through a
diffusion searching algorithm sensors are arranged in certain
configurations. These configurations then internally manage
their roles and resources. The configurations in terms of
their distribution in space are not fixed and the algorithm
allows movements of configurations through sensors. This
task however is internal to a configuration as it searches
in its neighborhood for appropriate resources and roles for
efficient operations. This is an example of localized self-
calibrating architecture. As the sensors notice an evolution
of the world, they use diffusion algorithm to ascertain change
of roles for sensors within the reach of its configuration.

We have been working on various other applications

of self-calibration in autonomous systems that cannot be
included here due to space limitation.

VII. F UTURE WORK

We believe that this work lays the foundation for research
and development for self-calibration. There are numerous
directions in which we foresee possible progress. Apart from
developing techniques and systems to effect self-calibration,
some generic engineering questions needs to be answered.

The starting step in this direction are the requirements that
gave rise to self-calibration.

Situateability: Situateability is a form of self-awareness
where model and world are compared for awareness. We
feel that research in self-awareness can sufficiently address
this concern. However, mapping of existing self-aware tech-
niques for self-calibration requires further research.

For our case studies, for instance, situating a varying input
stream as temporary change in world will be required for
spam filtering.

Metrics and Thresholds: Self-calibration maintains data
fidelity. However, metrics for validating data fidelity require
some in-depth study. Some basic analytical and control
theoretic models have been used for other self-* proper-
ties but metrics specifically for self-calibration need to be
investigated [1], [8], [12].

As we have discussed, metrics to identify when a term in
joint distribution of emails crosses the boundary from spam
to non-spam is an open problem for live system. Metrics and
thresholds for checking cluster fidelity are present [3] but
for surgical revision according to an incoming input stream
requires further research. Such metrics will be beneficial for
smart grid applications and automatic tag recommendation
software too. Similarly, metrics for evaluating lighting condi-
tions comparable with a static model are needed for collision
avoidance algorithm.

Model transformation : Methods need to researched and
defined on how models can be updated to effect self-
calibration. Various online algorithms provide an insighton
how this can be achieved [6]. However, for systems which
are based on offline learning, integration of surgical online
fine-tuning will provide interesting research avenues.

Various online algorithms exist [6] for maintaining a
model which is always updated. However, we require a
model transformation that updates the model in a time-
efficient manner without increasing the system turn-around.
For this we require model transformations for our clustering
approaches in smart grid and automatic tag recommendation
systems. We will require different transformation for model
transformation of autonomous robot.

Input Stream Transformation : Input stream transforma-
tion is most useful in collision avoidance robot and spam
filtering. Here we will require metrics which identify input
stream variations and correct transformations need to be



applied to input stream so that the model can be efficiently
updated.

VIII. C ONCLUSION

For content driven systems where the new information
from the outside world is continuously received the con-
structed model of the world gets obsolete with time. Taking
the system to an offline mode to reconstruct the model is not
a viable solution for time-critical systems. Reconstruction of
the model using self-optimization or self-awareness is also
inefficient as the process of reconstruction of the model
is expensive and time consuming. However, through self-
calibration the model is updated with minimal changes.

In systems that receive a lot of content e.g. spam filtering,
tag recommendation etc., much of the information is useless
or false positive. Therefore, self-calibration also aims to mit-
igate the inaccurate information and only accept statistically
significant information for the model tuning. We believe that
for systems that use AI techniques and are heavily content-
driven, self-calibration will provide an important missing
property in making these systems self-managing.

REFERENCES

[1] A BDELWAHED, S., KANDASAMY, N., AND NEEMA, S. A
control-based framework for self-managing distributed com-
puting systems. InProceedings of the 1st ACM SIGSOFT
workshop on Self-managed systems (WOSS)(2004), pp. 3–7.

[2] A LPERN, B., AND SCHNEIDER, F. B. Recognizing safety
and liveness.Distributed Computing 2(1987), 117–126.

[3] A MIGÓ, E., GONZALO, J., ARTILES, J., AND VERDEJO, F.
A comparison of extrinsic clustering evaluation metrics based
on formal constraints.Inf. Retrieval 12(2009), 461–486.

[4] BERNS, A., AND GHOSH, S. Dissecting self-* properties.
In Self-Adaptive and Self-Organizing Systems, IEEE Interna-
tional Conference on(2009), pp. 10–19.

[5] B ICKEL , S. Ecml-pkdd discovery challenge 2006 overview.

[6] BLUM , A. On-line algorithms in machine learning. In
Online Algorithms, A. Fiat and G. Woeginger, Eds., vol. 1442
of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 1998, pp. 306–325.

[7] BYCHKOVSKIY, V., MEGERIAN, S., ESTRIN, D., AND
POTKONJAK, M. A collaborative approach to in-place sensor
calibration. InProceedings of the 2nd international confer-
ence on Information processing in sensor networks(Berlin,
Heidelberg, 2003), IPSN’03, Springer-Verlag, pp. 301–316.

[8] D IAO , Y., HELLERSTEIN, J. L., PAREKH, S. S., GRIFFITH,
R., KAISER, G. E.,AND PHUNG, D. B. Self-managing sys-
tems: A control theory foundation. In12th IEEE International
Conference on the Engineering of Computer-Based Systems
(ECBS)(2005), pp. 441–448.

[9] FAWCETT, T. "in vivo" spam filtering: A challenge problem
for data mining.CoRR cs.AI/0405007(2004).

[10] GHOSH, D., SHARMAN , R., RAGHAV RAO, H., AND UPAD-
HYAYA , S. Self-healing systems - survey and synthesis.Decis.
Support Syst. 42(January 2007), 2164–2185.

[11] HASSAN, M. T., KARIM , A., JAVED , F., AND ARSHAD.,
N. Self-optimizing a clustering-based tag recommender for
social bookmarking systems. InInternational Conference on
Machine Learning and Applications (ICMLA)(2010).

[12] HASSAN, M. T., KARIM , A., MANANDHAR , S., AND
CUSSENS, J. Discriminative clustering for content-based
tag recommendation in social bookmarking systems. In
ECML/PKDD Discovery Challenge Workshop(2009).

[13] JAVED , F., AND ARSHAD, N. Adopt: An adaptive opti-
mization framework for large-scale power distribution sys-
tems. InInternational Conference on Self-Adaptive and Self-
Organizing Systems (SASO)(2009), pp. 254–264.

[14] JAVED , F., AND ARSHAD, N. A penny saved is a penny
earned: Applying optimization techniques to power man-
agement. In16th IEEE International Conference on the
Engineering of Computer-Based Systems (ECBS 2009), 13-
16 April 2009, San Francisco, CA, USA(2009).

[15] JUNEJO, K., AND KARIM , A. Pssf: A novel statistical
approach for personalized service-side spam filtering. In
International Conference on Web Intelligence (WI)(2007).

[16] KEPHART, J. O.,AND CHESS, D. M. The vision of auto-
nomic computing.Computer 36, 1 (2003), 41–50.

[17] K IVINEN , J., SMOLA , A., AND WILLIAMSON , R. Online
learning with kernels.Signal Processing, IEEE Transaction
on 52, 8 (Aug. 2004), 2165 –2176.

[18] KYRIAKOPOULOU, A., AND KALAMBOUKIS , T. Text clas-
sification using clustering. InIn Proceedings of the ECML-
PKDD Discovery Challenge Workshop(2006).

[19] MAINLAND , G., PARKES, D. C., AND WELSH, M. Decen-
tralized, adaptive resource allocation for sensor networks. In
NSDI’05: Proceedings of the 2nd conference on Symposium
on Networked Systems Design & Implementation(Berkeley,
CA, USA, 2005), USENIX Association, pp. 315–328.

[20] PETERS, I. Folksonomies. Indexing and Retrieval in Web 2.0,
1st ed. Walter de Gruyter & Co., Hawthorne, NJ, USA, 2009.

[21] ROTH, Z., MOORING, B., AND RAVANI , B. An overview of
robot calibration.Robotics and Automation, IEEE Journal of
3, 5 (october 1987), 377 –385.

[22] SALAZAR , N., RODRIGUEZ-AGUILAR , J., AND ARCOS, J.
Self-configuring sensors for uncharted environments. InSelf-
Adaptive and Self-Organizing Systems (SASO), 4th IEEE
International Conference on(2010), pp. 134 –143.

[23] SHAH , K., AND KUMAR , M. Distributed independent rein-
forcement learning (dirl) approach to resource managementin
wireless sensor networks.Mobile Adhoc and Sensor Systems
(MASS). IEEE Internatonal Conference on(Oct. 2007), 1–9.

[24] ZHANG, S.,AND HUANG, P. S. Novel method for structured
light system calibration.Optical Engineering 45, 8 (2006).


