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Abstract—Autonomic and autonomous systems exist within
a world view of their own. This world view is created from
the training data and assumptions that were available at thi
inception. In most of these systems this world view becomes
obsolete over time due to changes in the environment. This
brings a level of inaccuracy in the autonomic behavior of the
system. When this degradation reaches a certain thresholdl-
healing or self-optimizing systems generally recreate thevorld
view using current data and assumptions. However, the self-
optimization process is akin to kill a fly with a hammer for
minor tuning of the world view. Instead we propose the idea
of self-calibration for self-managing these systems. We ¢iae
self-calibration as the ability of the system to perceive th need
for and the ability to execute minimal tuning to bridge the
gap between system’s world view and incoming information
about the outside world. In this paper we present a case for
considering self-calibration as a self-* enabling propery of
systems specifically for time-critical systems using dataentric
Al technologies. We present our case by discussing three es
studies from different domains where self-calibration enales a
system to become self-healing or self-optimizing. We thenlgce
self-calibration in a generic system and explicitly descbe the
types of systems in which self-calibration can be implemeert
and the benefits that one can accrue from its inclusion.

I. INTRODUCTION

For these time-critical systems, the state of the art is to
model offline and later use this model to make its real-time
decisions. But this brings us back to the issue of timely
adaptation to changes in the world.

A possible way to solve this problem is to make the
autonomous intelligent system self-managing so that inmai
tains fidelity of its model with the world. Based on the
system’s operations this can produce self-healing or self-
optimizing or even self-protecting properties in the sgste
But if we look at this task through the generally accepted
self-* definition or analyze operational requirements to
maintain model fidelity we see that this task is subtly differ
ent from self-healing, self-optimization and self-prdiea.

As we will argue in section Il, the task of maintain-
ing model fidelity is more akin to intelligent, automatic
calibration of system than the task of maintaining health
or optimizing system’s performance or protecting system
from threats. Though this task of maintaining model fidelity
results in a self-healing or self-optimizing system, thgkta
is inherently different from the accepted norms of traditib
self-* properties.

We can also compare this task to adaptive control. Adap-
tive controls or self-tuning controls calibrate their aatlers

Autonomous intelligent systems in general create a worldaccording to the changes in environment. For instance, a

view to reason, analyze and plan their actions. This worlccommon example is the adaptive control of an aircraft. The
view, or system’s internal model, is created from variousparameters to control an airplane are dependent on weight
sources including the training data, assumptions, and modf the plane. But as the plane flies, it's weight changes
eling artifacts available at time of inception. It is acegpt due to consumption of fuel. Adaptive controllers adaptrthei
that this world view is an approximation of the actual world working by observing the system and correcting themselves
in which autonomous intelligent system exists. Furtheenor due to change in environment. Adaptive controllers such
as the world evolves over time accuracy of representation adis model reference adaptive controller (MRAC) calibrate
this model is expected to drop. the base controller against a reference model to correct the
Our interest is to maintain an appropriate model of thesystem errors due to environmental evolution.
world despite the changes in the world so that autonomous In various applications, however, standard controllees ar
system operates accurately. Online models are a solutiomot applicable and other intelligent computing solutions a
for such problem [6], [17]. However, for a range of time applied. For these systems, calibrating of the controlter o
critical applications such as spam filtering, demand respon the autonomous manager is not well defined according to
systems in smart grids, web 2.0 data handling etc., onlineur study.
algorithms are not suitable due to various factors. These In this paper we present this concept of self-managing
factors primarily are concerned with response time and scakalibration or self-calibration for data-driven timetaral
ability issues with respect to size of data and its dimerssion systems. We provide an abstract system definition and de-



scribe ways to achieve self-management of model through « First, the fall in accuracy is usually due to a small subset
self-calibration in this abstract system. In addition we de of misclassified new knowledge about the environment.
scribe two architectures to implement self-calibrationhis At any given time multiple small subsets may affect the
abstract system. To ground the problem we provide case correctness of the model.

studies from three different domains- web 2.0 application, « Second, the fall in accuracy is based on evolutionary
spam filtering, and sensor networks- which benefit from changes and occur with unpredictable frequency and

use of self-calibration. Our contributions in this papee ar size. Usually in a large system many small scale
(i) We describe how self-management of a model can be changes occur and if self-awareness is only tuned to
achieved through self-calibration in an abstract systein. ( total system efficiency then these small scale changes

We define two architectures which can be used to engineer go under the radar.

self-calibration in the class of systems we consider in our |, sych systems, we have seen self-optimization [11]
scope. (iii) We provide case studies to ground the generig; seif-healing [14] as a possible solution. However, self-
system in concrete exellmple.s. _ ~ optimization, or self-healing, properties by their veryidie

The paper is organized in the following way: Sectiontion are not able to respond effectively to the evolutionhef t
Il discusses the reason for proposing self-calibration. Weyorld [4], [16]. Self-healing is the property of system tcahe
follow this we definition of self-calibration in section llin itself against bugs or failures. A self-healing system may b
section IV we describe an abstract model to position andyple to identify a drop in efficiency due to partial failure of
define self-calibration. Section V describes the process ofhodel. But a deviation of real world from system’s world
incorporating self-calibration in the abstract systemisTi&  view cannot be categorized as a failure of system specially

followed by case studies, future work and conclusion. i individual deviations are too small to warrant action in
the total system. Secondly, self-healing techniques trfjxto
Il. MOTIVATION a problem but here the goal is to adjust model to improve

A i q tent dri ; inteli efficiency as compared to restoring some property which
range of time and content driven autonomous intelli-\ <0 st que to a bug or a failure.

gent systems such as spam filtering software, forecasting Self-optimization seems like a more appropriate property

engines, online tag recommendation, etc. are based on off- L ; .
line learning alaorithms. Here by content driven engine Webut self-optimization is not geared to sensing failures to

9 alg ' > DY . 9 ._correct but is rather looking for ways to improve perfor-
mean systems where operations, goals or primary services

. ance. Usually self-optimizing systems either try to main-
are dependent on and driven by content. In these systems th1 y P gsy Y

N . >MS W8n a threshold of performance or periodically check for an
costly step of model creation is done off-line and decisions . . :
. . : . opportunity to improve their performance. For a large scale
are made during execution using this model [12], [13], [14], : . .
[15]. Since the content changes over time, the static p#-li system where multiple small scale inflow are happening,
: 9 L S neither of the methods can capture the error and fix it. If
model becomes obsolete after some time resulting in dro

in correctness of the system. On the other hand, currer threshold is being maintained then it is possible that a

) . : . . number of inflow have made the model quite obsolete by the
online algorithms are not viable due to time constraints,. : o i

T . ) time threshold is reached. This will necessitate a complete

or scalability issues with respect to large variable space o

. or atleast a major relearning of the model. In case periodic
data size. There are two measures of concern here: accurac

and efficiency. Accuracy is the measure of correctness O?Mportunity for optimization is checked then it may happen
' that between two epochs major changes occur and again

system and efficiency is the measure of how the systery odel is sometimes changed beyond repair. We will discuss

operates. This includes response time, resources utilize{*ﬂ . . S
. - “these issues in more detail with respect to the system model
etc., Whereas an off-line model affects the accuracy, enlin.

. in section IV.
models affect the efficiency of the system. . .
. . Our argument is that, since the downgrade of correctness
We observed that the degradation of system is dependelrg due to minor changes in some parts of the world, the
more on the model’s ability to reflect the world adequately '

. . : . olution to these shortcomings should also focus on ac-
and less on time passed since the inception of the mode?. 9

. . commodating these changes by minimally tuning the model
T_he_aC(_:uracy of the syst_em_ remained healthy .Wh"e th‘focally. This will make these adaptations efficient enough t
distribution of knowledge in input stream was similar to

S pdate the model at runtime resulting in a more accurate yet
the knowledge of training data used to create the mOdelszcalabIe system.

But degradation results in some cases quite rapidly when
knowledge obtained from the input stream diverges from the
model [12], [15]. This evolution of the world is the major
cause of degradation of service. To undo the effects of these evolution-induced changes,
There are two characteristics of the effect of world evo-we explored calibration of system when the system model
lution on the system and its model. and the sensors capturing the state of world do not match.

IIl. DEFINING SELF-CALIBRATION



Calibration is defined as: 2) Instrument appropriate calibration actions on the sys-
tem to minimize the gap between system’s world view

Definition 1. A minimal tuning, filtration, or characteriza- and the actual world.

tion of raw information about the system’s environment to That is, self-calibration is an ongoing process in which
reduce the gap between system’s world view and the actualystem first identifies the point where system model and
world. actual world diverges from each other. It then initiates

rocesses to reduce this gap whenever and however pos-

Calibration is referred to as the.process of aplwstmiible' This property as is evident from definition and its
system to remove systematic errors in sensor readings. T%

¢ h 0 b d to refer to th q by whi epplica’[ion, is not a goal in itself like self-optimization
erm has aiso been Uused 1o reter fo the procedure by wWhicg, self-healing. Rather it is an enabling property which
raw outputs of sensors are mapped to standardized units ffici if-heali d self-ontimizati .

7]. Various engineering and professional disciplines usesupports.e lclent seli-healing and se -0pt|m|zat|onllsy1.g

[ o . . s ' observational traits of self-healing and self-protectidhis
calibration to adjust their instruments’ model in a new

) . ultimately helps in planning and executing a boost in effi-
environment. In essence, when the internal model of th y P P 9 9

; : . . tiency to provide self-optimization property to the system
system and it's sensor readings are out of sync, calibration ytop P property y

are done to adjust the differences in model and sensor@. Desirous Attributes

In sensor networks, robotics, and computer vision, such
calibrations are needed when the system is deployed in a ne,
environment. There are automated methods for calibration
but the process is explicitly initiated by the user deplgyin
the system and is done once for an environment [21], [24].

Autonomous systems in contrast very rarely change their
physical or operational environment. However, such system
are faced with the problem of an evolving environment
where new terms, tags, devices, etc., are added, replaced,
updated, and removed frequently. Bychkovskiy and col-
leagues argued that calibrations can be a good solution
for autonomous systems [7]. But, there are two aspects
of autonomous systems that contribute in making simple
calibration a complex task.

First, for traditional calibration, it is explicitly iniited at
a certain time in the life cycle of device. This is not possibl
for online autonomous systems. Calibration in these system
is a tool to handle changes over time. As we will show in
our case studies the need for calibration is unpredictable
at design time. Thus we can not define a specific point in
time in life cycle of system where calibration will take ptac
Rather we would have to intelligently identify when we will
calibrate the system.

Second, usually there are numerous variables, sensor
streams, and tuning parameters in an autonomous system.
Deciding how to effectively calibrate the system is a non-
trivial task.

To execute effective re-calibration of such system we
propose self-calibration as a desired property of time and
content driven autonomous and autonomic systems.

We define a self-calibrating system as:

Definition 2. A system which is able to:

Based on the definition of self-calibration we argue that
lyc\fllowing attributes are required to achieve self-calttma.

1) Situateability: First and foremost, the system should

be able to situate its data with respect to its model.
For autonomous system, the system model is the
description of its world. But the real world generating
the input stream may have changed since the inception
of system model. An autonomous system requires a
sensor/analyzer to situate its model with respect to
the input stream to identify error in the data-stream,
sensor, or the model.

) Input Stream Transformation: System should be

able to regulate its input stream to protect its model,
correctness or efficiency from temporary events in
the world such as data burst or spikes. For example,
the personalized spam filter discussed in section VI.2
needs to identify if the updated model is required or
not.

3) Model Transformation: System should be able to

update its model to incorporate changes in the world.
This model transformation should reduce the distance
between system’s internal model and the observations
from the world. The model transformation should be
minimal to reduce the overhead of self-calibration.

4) Metrics and Thresholds: System should have metrics

to evaluate data fidelity as a temporary event or a
valid change in the world. System should be able
to use these metrics and thresholds to trigger input
stream transformation, or model transformation. Met-
rics should also identify when self-calibration will fail
and model regeneration will be required.

We define a system that fulfils the above mentioned

requirements as a system with self-calibrating propettatT
1) Identify the need for calibration by intelligently is, a system is self-calibrating if it is able to analyze and
observing relevant raw information and the internal compare its internal model with the world and tune data

constructed system’s world view

and/or model to bridge the gap between system’s world view

and incoming sensor input stream.



IV. ANALYTICAL MODEL two types of models X¢/*) of the world (R*) which are
In this section we describe the abstract system and itEelevant to the type of systems we are working with. First is
property to reason about self-calibration. This will help u @ singularity world which is based on a single phenomenon.
define generically, the types of system models which can bBY Singularity we mean phenomenons which represent a sin-
made self-managing through self-calibration. We also éefin 9l€ possibly complex system such as controlling an aircraft
boundaries for its usage under the scope of this paper. control planes or forecasting energy load of a system. Self-
First, we build a generic system and world abstraction calibration is well defined under the title of adaptive cotgr
Then we will place the performance measurements of interfor these systems in literature of control theory and time
est within the scope of this abstraction followed by defamiti series analysis. We do not see a need to revisit or reform it

of self-calibration in this generic world. to our scope or define such system in our generic definition.
] In comparison a constructed world is an aggregation or a
A. System Model and Notation composition of multiple sub-components under a single en-

We build on the abstract model proposed by Berns andironmental or operational assumption. In such constdicte
Ghosh [4]. Whereas they restricted their model to systenworld many components combine or contribute to form
components, our discussion necessitates abstractingvthe | R%. In these systems many independent sub-models or sub-
ing and breathing world in which our system operatescomponent contribute to form/¢. If we define domain of
We represent this world aB®. For our system this world R as the total space world occupies then each component
produces a set of observations at time ¢ and an output % of the world would represents a sub-space such that:
out® that we can represent &s;, out®] < R*(t).

. . a k pa

An autonomous system tries to capture these observations R Z R

and replicate processes iR*(t) to generateout®. That k

is the system is given asput®] <« S(r;). Here S is  Here superscript prior to variabl® represents thek"
the autonomous system; are the observations fromk“ component ofR. When we try to approximate such world
observed through sensors 8fandout® is the system output  mogel as)$ then we see thalZs can be in a continuum

to replicateout®. . between generalizational and compositional models which
Internally S maintains a staté;. This internal states = \ye define as under.

{X;} represents the system and transitions non-linearly over Compositional modelstry to model the sub-spaces of

time. X; has three possibilitiesY; € {CUFUD}. Clisthe  pa These sub-spaces are modeled and combined to form

set of sound or correct staté is the set of faulty state and e total system. We can say that the system madgl
D is the set of transient state degraded states. These statgsSq;m of j componentsM; = S JM; such that a sub-

are roughly modeled on the survey of self-healing system . 7
by Ghosh and colleagues [10]. model’ M7 models one or more components of spdte
The state in turn is composed of system modl&l and  In application parlance, this is akin to clustering of data o
internal state variables,. That is: X; = {M*,z,}. As part maintaining an ensemble of classifiers where a cluster or a
of state, the system constructs a moki&l which attempts to ~ single classifier represerith component of M.
construct the world?® using historical trace of observations In comparison,generalizational models are those in
from some timet — ~ till ¢. which M is an approximation or generalization of ijs
components i.eM; =~ Vj7M; with some discriminative
method to differentiate betweel?® regions. We can also
We would now discuss the worl®® and its hypothetical conversely say that)/; is a specialization of a generic
working. It can be argued thak® builds its output based model M where M represents the total worl&® and
on some model/“ for every timet. As an external entity, 7M; represents thé'" component ofR¢.
we do not know of this model and can only infer it through It can also be visualized as a system where therejare
learning its historical outputs and observations. Hence weubsystems with some commonality among them. The total
can only approximaté//* through some model/;. system is an average output of each of the independent
This modelM; is our best way of capturing the working subsystem and is constructed in a way so thit is an
of world R*. Online algorithms continually update their average of the entire system.
model M; based on their observations as is the case of For these systems When we simuldt&’ under obser-
model adaptive control. However, in offline systems thisvations of j** component {r¢) then it produces output
model is not constructed continuously. Thathg; is created  7out; appropriate for thej*® component. An example of
at discrete times and same model is carried over till nexgeneralizational model is our spam filtering case study
model creation is initiated. where each mailbox is a component. Global spam filtering
Possibly infinite modeling paradigms exist to model theconstructs a model for all the mailboxes (or senders) throug
world. However, for the scope of this paper we classifya unified corpus of labeled data. This global spam filter

M} < train(ri—y..1¢)



models all mailboxes to a certain accuracy level.

B. Measurements

It is imperative that the system is observed and measured

to verify if it is achieving its intended goals. For this poge (@) (b) ©

both functional and non functional measures are of interesTiQUfte+l; Vgﬂn d,itagfamj ?faowingt_setmgs an_f:_out“hfor (@ tfimeti(g
. . e 2 and positive and (C) negative and positive changes from time

to ascertain the health and eﬁectlveness .Of a system. + 1. negative is shown colored grey and positive is shaded veéttical

may evaluate a system through a functiowhich calculates Iines.

instantaneous performance at timhgiven asp;. . . I o
architectures to implement self-calibration for composial

P, <= p(X;, e, outy, outy) and aggregational models.
. . . Autonomous data-driven time critical systems create a
This performance is based on overall system state and if,,4el to reason about the world around them to make

most cases the input stream)( There are three important ya.isions. The goal is to mimic world mod&I® as much

components of P, that are of interest.to us. First and g possible in the internal mod&l*. Though this modeling

foremost is accuracy that we can quantify as: may not be perfect but correcting this error is beyond the

scope of this paper. Our focus in this section are architestu

to handle the issue that arises when evolution in world
The second measure is of safety and liveness to measuiigcreases the gap betwedn® and M* over time.

health of the system. We use Alpern and Schneider’s defi- We illustrate our point through venn diagrams in figure

nition of the terms [2]. A system may haveé safety andL. 1. This system represents a binary classification where set

liveness properties. Informally safety property impliéatt A represents output af/* and B represents output @f*

“pbad things never happen to the system” and liveness impliest time ¢ in figure 1(a). Without loss of generality we can

that “good eventually happens”. extend this model to multi-dimensional domain and multi-
The third important measure is performance which carvariate decision making.

be measured as response time of system or as resourceThe error of the system, by set expression is:

requirements to achieve some quality requirement. Measur-

ing performance in abstract system is not feasible due to errory = (B — A) + (A - B)

limitation posed by abstractions. However, we will discuss

effect of self-calibration on performance in our case stadi

accuracy = |out® — out®|

At some timet + 4, M“ evolves into C as shown in figure
1(b). the error at + i is represented as:

C. Self-Calibration

We describe self-calibration in our abstract world. A
description of other self-* properties in similar contexnc Here we are interested in positive change in the error or
be found in [4]. We define self-calibration as a function A, which is shown as shaded region in figure 1(c). This
selfCalib of modeld/® and input stream...;. Accordingto in essence is the error that did not exist at timand is
our definition of self-calibration, it is the minimal tunirgf ~ caused due to evolution iR*. The expression is:

model or input stream to reduce disparity between system
model and actual world. That is: Acrror = (C=(A+B))+((A+B)-C—(A-B)—(B-A))

erroryy; = (C —A)+ (A-C)

(M, 1, 7)< selfCalib( M, r;) Self-calibrgtion specifically focus on thg _harmful effects
of the evolution and not consider the positive changes due
such thaﬂJV;Ll—Mﬂ < |Mg—DM?|. Thatis,selfCalibis  to it. As can be seen in figure 1(c)), the shaded region
a function that reduces the distance between the real world a positive change in system’s output due to evolution.
model and the system’s model. If we consider total system performance or accuracy then
This in itself is not a critical property of a system like we may not see much change. But if negative affects of
self-optimization or self-healing. But as we have shownevolution can be captured and fixed as they occur then this
previously, it enables self-optimization and self-hegiiman  can save us from larger and costly wholesale corrections
efficient manner. Next we will discuss how we can engineetater in the life of system as is the case for self-optimizing
self-calibration in the abstract system. tag recommendation [11].
Thus the goal of self-calibration is to reduds., ;.
We propose two architectures which can achieve self-
In the previous section we have described an abstraatalibration in such systems and result in self-healing or
world for discussion on system and world model and defself-optimization of the over all system. The selection of
inition of self-calibration. In this section we propose two architecture is dependent on the nature of system, existing

V. ENGINEERING SELF-CALIBRATION



autonomous management algorithm and the flavor of self- Note that this is true for sub-components models but not
management required. for entire system as has been discussed above and shown
There are two tasks of self-calibration, first is to identify graphically in figure 1. Here we can see that though total
when calibration is needed and second is to instrument therror for system may be less at time+ n than at timet.
calibration. In this discourse we will identify the point at But we can see that the error in sub-components can still be
which calibration is needed and object on which calibrationobserved and corrected.
needs to be done. The actual method of calibration is domain We would like to point out that observing total error
specific. This will be discussed with more details the in casef system does not provide the insight we need for self-
studies. calibration.

A. Architecture 1: Sub-model Self-calibration (SMSC) for
Compositional Models

Our first architecture is for systems constructed for a SuPPOSe that gain in accuracy due to evolution is the same
world R® which is composed of components such that: @S drop in accuracy. This would mean

| My — M| # |out} — out|

RO — ZkRa lout] — out| = |out],; — outf,,|
k

This will give the false impression thal/} is similar

Figure 2 represents such a system. Hefeis segmented to /7 ,. However at component level the model would
internally into £ segments. An autonomous system ideallyhave moved. In case-study 1 we discuss similar system
would identify each region and map it to its internal sub-where without self-calibration we were not able to monitor
model’ M. Combining all’ M sub-models will cover the component level degradation. By the time system level
domainR“. This modeling may have error such as incorrectdegradation was observed the model had already denigrated
mappings and overlapping regions. resolving this error iso much that minor adjustments were not sufficient and
beyond the scope of self-calibration. wholesale system re-modeling were required.

The goal of sub-model self-calibration (SMSC) architec- Through this type of calibration we maintain the safety
ture is to autonomically calibraté)/; with *R* as*R*  property that “bad things never happen to the system".
evolves over time in ways similar to an airplane’s contmglle Through this system we can capture the system moving
adapting to its evolving environment. The goal is to maimtai towards D state and recover it before it goes to unhealthy
fidelity of of 7 M} with kR“. state as described in [10].

To identify what and when to calibrate we will look ) ) )
at ways to quantify distance aR® and M. For such B. Architecture 2: Reference Model Based Self-calibration
systems we can say that the distance betwegnand A/} (RMBSC)
is equivalent to distance between pairwise sub-models: Reference model based architecture is designed for system
M — M| = il M — 9 a8 models_Mf) which are genera_lization of sub-system mc_)dels

|M; i1 = Vil M; il (?M7). in these models thé/; is an average or generaliza-
If measuring’ M is not possible then we can approximate tion of the component models\Zi. Conversely the model

it by measuring the output of sub-components: (/ My) is specialization of §/;°) which is a generalization of
R, e entire system. Systems such as personalized spam filtering,
Vil? My —7 M| = Vi outi — 7 outy| our second case study, is an example of such systems.

For systems which transition smoothly we can extend this Previously generalizational systems used to maintain a

measurement method of model health to time beytortidat single global model. However, recent trend is to increase
is: accuracy by adapting local models for each entity that

vj|ths _ th¢z+n| _ W|j0utf+n _ jout?+n| combines to f(_er the model. Though this‘increases system
accuracy, but it has the overhead of creatjingodels. This
effort if done only once in life cycle may be applicable but

many adaptations at runtime are abortively costly.
‘ . To implement scalable adaptation of such systems we
‘ : propose architecture shown in figure 3. This model is similar
() to MRAC with some differences that we will discuss here.

MRAC works on the principle that system maintains a refer-
Figure 2.  Architectural design of compositional system slod® is ~ ence model to correct evolution in environment. A controlle
composed é)fk Cgmlpone“ts- ﬁYStem mt;)de'datlte?ms )tO 'ﬁent'fy thdésle is designed with certain assumptions and boundaries on the
regions and model it internally aB sub-models {A£7). These mode . . .
compose to form the total system modls. environment. When these boundaries are violated the model
updates the controller for the new environment.



M7

i
L_J modeler

Terror, = [T My — M{| ~ [ My — M|

self-calib

]%P . ‘}“ Using same argument at time-: if we update our model
deler [T Mg, ; then we can say that:

MP,, ~ M}
‘ t+i ~ t+i
ori Autonomous| * OUt;

‘manager

Using this relationship we can compare i component’s
un-updated model ta/¢, ;.

Figure 3. Data flow architecture for Reference Model Basel- Se
calibration . Data stream, representing entire system is stored in data store

and global modelM; is created from it. Self-calibration decision maker Terroryy; = P M7 — M| ~ [ M — M;, |

(DM) compares this model withj** component's model and provides

control signal whether to create a new model faromponent at this time. This measure of distance of modteSF existing compo-

The data stream foft"* component is also stored in a local data-store. If . . . A

self-calib DM provides a positive signal then a néw/; is created and nent Wlth_ the best approximation of world model will gllve

passed to autonomous manager to make run time decisions. us objective measure to evaluate when and what to calibrate
at timet + 1.

RMBSC core is similar to MRAC. But unlike MRAC our 1) When and What to Self-calibrateThere are two

architecture provides a method to train the reference modelariants of calibrating system based on core demands of
as well. This way the adaptation itself can be adaptablecbasesystem. For a system concerned about quality of service
on the environment around it. There are two reason for thi§QoS) we can set a threshold of healthsuch that when
extension. First, because in some situations it is requiredijistance of a sub-component breaches this threshold, re-
and Second, because we can do it.0. calibration of this component is performed.

Consider architecture in figure 3. The architecture repre- VMg — IME > T
sents architecture fof"" sub-component. The task of the  Another possibility is that we can limit the resource
manager here is to make decisions jét sub-component ytilization by putting a threshold at the number of cali-
using mode¥ My for incoming dataflow. This model may prations that can be done in an iteration. In this method
be an adaptation of the generalized model for all fhe the components are sorted accordingAg.,.,, and topz
componentsl/¢. On a global level, a generalized model of are chosen for calibration where is dependent upon the
entire system containing data from all thecomponents is  available resources.
maintained. This may be learnt model at time i or a ref- This type of calibration maintains the safety property that
erence model depending upon the system. On some specifigad things never happen to the system". Moreover, through
triggers (e.g. construction of ne;’), My is compared with  this system we can capture the system moving towddds

each of’ M. Based on system goals, the distance betweestate and recover it before it goes to unhealthy state as
My and My is used to initiate an adaptation for selecteddescribed in [10].

I M. The adaptation algorithm then adapts the exisfifigy
using the local data oft" component. VI. CASE STUDIES
According to our assumption, system modé|’ at its In this section we present three case studies of self-
inception is the best approximation of world model®  calibration from varied domains. The domains vary from
and no better model can be made with the resources arslitomatic tag recommending web 2.0 application to spam
techniques available. For all practical purposes we can safjitering to sensor networks. The goal of these case studies
that if model is created at timethen: is to present exemplar systems where self-calibration ean b
Since M} is a maximal approximation o/ we can helpful and provide examples of our proposed architecture.
write target of self-calibration system as. ) )
A. Automatic Tag Recommendation
M} ~ M2 A folksonomy, or collaborative tagging, is a system of
classification of documents through collaboratively drest
According to definition of generalizational model we also and managing tags to annotate and categorize content [20].
know thatM; is a generalization of components 8f We  The system allows its users to assign keywords, or tags, to
can thus say that: resources for navigation, finding resources, etc.
We proposed an automatic tag recommendation system
IMP ~ M} ~ M for folksonomy based on discriminative clustering [12].A
new document is first classified into a specific cluster and
If we consider the error fo§!” component at timeé, we  the top 5 tags of the cluster are recommended as possible
can use logic similar to previous case and state that: tags for the document. The accuracy of the system however,



! ‘ ‘ ‘ ‘ [P—— between users. To show this figure 5 plots class conditional
o8 Self-Calbrating probabilities of spam and ham for two users against the
g oor ] term frequency of spam in the generalized model from
Eoat ] ECML data set [5]. Term frequency is the number of times
“’%\ /\/\ /\A ] a term appears in an email. Different peaks and troughs in
T figure 5 points to difference in terms which are considered

Example to be Tagged

spam by different users.

Figure 4. Comparison of cluster accuracy with and witholftcadibration.

Red line shows regular results when system allows clusteforeance To handle this concept drift among users, personalized
o dearade, CreerIne shous, SelLcalbaton esufalt be Seen 1 spam fifering was considered. A global corpus of emails
After the calibration step accuracy of cluster is restoretll 0" example ~ Was used to train a global filter and this filter was adapted
when another round of calibration is done according to user's own email repository [15], [18]. This
was affected over time. As new ideas and concept emergesults in 5.5% increase for task A and 10% increase for
the tags and their relationships with documents also chang#ask B in accuracy of spam filtering [15].

To handle this accuracy drop due to distribution drift, we But this does not solve the problem of concept drift
proposed to rebuild the prediction model by re-clusteringover time. As can be seen from figure 6. Term frequency
[11]. To automate the task we proposed a self-managinfpr spam and ham changed between two time periods for
mechanism for this process. A self-optimizing systemthe same user. The problem can be resolved with repeated
though is able to keep a high level of accuracy, but suckconstruction of the global model and its adaptation for loca
massive re-modeling step is an overkill. Especially whenmodels but with hundreds of thousands of local models, such
up to 65% of clusters remain intact and majority of theadaptations were not possible.
system is not affected by clustering. This points to the We applied the second self-calibration architecture using
intuitive idea that over time not all information will chaeg the global model asV/7 and individual mailbox models
but rather some relations between document classificatioas 7 M;. This resulted in objective way of identifying the
and tags would be re-ordered. What is required is not selfpersonal mail boxes which were most distant frdify.
optimization but minimal self-healing of system. We applied a threshold such that only the worst 20% of

We found that a large number of documents were beingnailboxes were adapted at each iteration. This resulted in
clustered correctly but the evolution of tags by users wasninor drop in accuracy while it reduced our computing
not represented in the system. We implemented architectur@source requirement to one fifth.

1 in this scenario. F!gure 4 shows resulting f-score with andcl Sensor Networks

without self-calibration. The accuracy of cluster was 0.35 ) ) o
before example 5 (Y-axis value). Without self-calibration S€nSOr networks present an interesting application for
the average accuracy goes down to 0.0197. However, selgelf-calibration. The distributed nature of sensors arttbad

calibration restores the accuracy 0.329. In addition wend evolving world they work in makes self-calibration a

observed that this drop in accuracy, or its healing, did not Diference of Spam Probabiltes Difference of Non-Spam Probabilties
affect the global accuracy by much. Without healing global ’

0.02 002 }

u

Probability Difference

accuracy was 0.1592 and with self-calibration it was 0.16. B N ,
. . T L "
Such a minor change in accuracy at global level was not 2 [ o
. 0 200 400 600 800 1000 0 200 400 600 800 1000
observable but at a sub-component level it was observable Torm 14 TormId
and correctable. It is evident th.at self-calibration ofteys Figure 5.  Shift inp(z|y) between training and test data for ECML-A
can make the system self-healing. dataset (individual user's e-mails), wheye{spam, nonspam} andz is
an email

B' Emall Spam Fllterlng ‘ 10° Spam Probabilities 10° Non-Spam Probabilities

Filtering spam mail or Unsolicited Commercial s 6
Email(UCE) is an important task for mail service providers. z 4

The process needs to be fast and effective. Due to this
reason spam filtering techniques usually build an offline
model on the data collected from users. Emails which are
already classified as spam and ham (meaning valid emails)
are used to train a classifier. This global model is then used
to filter spam emails.

However, as has been shown by Fawcett, spam and ham
email patterns shows concept drift [9]. This means that the O LS P E s s 2 s

x10°
concept of what is spam "drifts" or changes over time and
Figure 6. Difference imp(z|y) for e-mails from different time periods for
ECUE-1 dataset), whergespam, nonspam andz is an email

Probability Difference
5
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very interesting application in this domain. The concept ofof self-calibration in autonomous systems that cannot be
calibration has already been used in sensor networks [7]. included here due to space limitation.
Here we will present two different types of sensor

networks and relate them with the architectures we pre- VII. FUTURE WORK

sented. Furthermore, our proposed architecture can provid . . .
these systems with extending their adaptation. Mainland We believe that this work Iays th_e foundation for research
and colleagues propose Self-Organizing Resource Allogati and o!evelppment for self-callbrathn. There are numerous
(SORA) sensor networks [19]. A similar work (DIRL) by d|rect|or_13 in wh|ch we foresee possible progress. Apgmfro
Shah and Kumar used an economic model as the globgeveloplng techniques and systems to effect self-caldat

model but had similar architecture [23]. In both systemdeac Some generic éngineering gue§t|ons needs to F’e answered.
sensor can assume different roles in the system. A SensorThe_startmg step in th|§ direction are the requirements tha
can be active scanner, passive scanner, data aggregator o9&’ MS¢€ to_ _self—c_allbrauop_. )
networking node. With a changing world it is impractical to Situateability: Situateability is a form of self-awareness
explicitly assign a specific role to each sensor. The pragoseVheré model and world are compared for awareness. We
systems propagate a central cost or economic model to dif€! that research in self-awareness can sufficiently addre
sensors. Sensors use this model to bid on different actiorf§iS concern. However, mapping of existing self-aware tech
and through this auction mechanism each sensor assumB§lues for self-calibration requires further research.
the optimal role according to market forces. Whereas the FOr our case studies, forinstance, situating a varyingtinpu
sensors in this mechanism are self-optimizing the overafftream as temporary change in world will be required for
emergent behavior is self-healing as well. spam f]Iter|ng. - o

Assume that a sensor goes offline. The remaining sensors Metrics and Thresholds Self-calibration maintains data

can then win in auction the responsibility of offline sensorsfidelity. However, metrics for validating data fidelity reop
in the most optimal way. some in-depth study. Some basic analytical and control

If we consider incorporating the assumptions of DIRL theoretic models have been used for other self-* proper-
and SORA, we see an application of our second propose@es but metrics specifically for self-calibration need t® b
architecture (RMBSC). Both the systems are dependent onigvestigated [1], [8], [12].
global model which can best utilize the sensor network. This As we have discussed, metrics to identify when a term in
model is based on considering the generalization of sensoigint distribution of emails crosses the boundary from spam
to ascertain the most optimal mix of policies. In essencd0 non-spam is an open problem for live system. Metrics and
this is creating a\/; so that each sensor, ¢t component thresholds for checking cluster fidelity are present [3] but
of system can adapt it to its local needs. Although it isfor surgical revision according to an incoming input stream
assumed thatM/? will exist but both the system leave requires further research. Such metrics will be beneficial f
its construction as assumption or as future work. RMBSGsmart grid applications and automatic tag recommendation
provides a concrete architecture to incorporate modelig a software too. Similarly, metrics for evaluating lightingredi-
maintenance of\/# and provide tools for its propagation, tions comparable with a static model are needed for cotlisio
comparison and utilization. avoidance algorithm.

This global model will require regular evaluation and on Model transformation: Methods need to researched and
each re-evaluation, sensors can decide if they wish to epdaglefined on how models can be updated to effect self-
their role or continue in their current state. calibration. Various online algorithms provide an insigint

Another flavor of sensor networks works by partitioning how this can be achieved [6]. However, for systems which
the world according to its evolution such as the workare based on offline learning, integration of surgical anlin
of Salazar and colleagues [22]. In this system through dine-tuning will provide interesting research avenues.
diffusion searching algorithm sensors are arranged imitert ~ Various online algorithms exist [6] for maintaining a
configurations. These configurations then internally managmodel which is always updated. However, we require a
their roles and resources. The configurations in terms ofmodel transformation that updates the model in a time-
their distribution in space are not fixed and the algorithmefficient manner without increasing the system turn-around
allows movements of configurations through sensors. Thigor this we require model transformations for our clusigrin
task however is internal to a configuration as it searchegpproaches in smart grid and automatic tag recommendation
in its neighborhood for appropriate resources and roles fosystems. We will require different transformation for mbde
efficient operations. This is an example of localized self-transformation of autonomous robot.
calibrating architecture. As the sensors notice an ewauti  Input Stream Transformation : Input stream transforma-
of the world, they use diffusion algorithm to ascertain d@n tion is most useful in collision avoidance robot and spam
of roles for sensors within the reach of its configuration. filtering. Here we will require metrics which identify input

We have been working on various other applicationsstream variations and correct transformations need to be



applied to input stream so that the model can be efficientl{j10] GHosH, D., SHARMAN, R., RAGHAV RAO, H., AND UPAD-
updated.

For content driven systems where the new informatior{ll]

VIII. CONCLUSION

from the outside world is continuously received the con-

structed model of the world gets obsolete with time. Taking

the system to an offline mode to reconstruct the model is not
a viable solution for time-critical systems. Reconstrctdf

the model using self-optimization or self-awareness is als

inefficient as the process of reconstruction of the model
is expensive and time consuming. However, through self-

calibration the model is updated with minimal changes.

In systems that receive a lot of content e.g. spam filtering,
tag recommendation etc., much of the information is useless
or false positive. Therefore, self-calibration also aimsnit-

igate the inaccurate information and only accept stasifijic

significant information for the model tuning. We believettha
for systems that use Al techniques and are heavily content-
driven, self-calibration will provide an important misgin
property in making these systems self-managing.
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