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Abstract—Dynamically adaptive systems (DAS) such as smart
grids, cloud computing applications, sensor networks and P2P
networks tend to change their structure at runtime. Therefore,
design-time modeling for such systems are sometimes not enough
to incorporate self-* properties. To this end, we have developed
a dynamic mathematical modeling framework for runtime opti-
mizations for DAS. In this paper, we describe how our system
engineers a linear programming model by using a smart-grid
application for power distribution as a case-study. At runtime
whenever an optimization is desired this modeling framework
captures the state of the system, converts it into an appropriate
linear programming model, plan the changes using mathematical
manipulations and apply the changes to the actual system. Our
results show that this framework is able to capture accurate
runtime models of large power systems and is able to adapt
itself with the change in the size or structure of the system.

I. INTRODUCTION

Dynamically adaptive systems (DAS) or autonomic systems
such as smart grids, sensor networks, cloud computing systems
pose new research challenges to the modeling community.
These challenges often stem from the fact that usually DAS
have to adapt to changes not envisioned at design-time. Often
these changes are to be carried out under strict time-lines.
Since these are time critical changes, often they have to be
carried out automatically by the system itself without any
human involvement. Indeed a system cannot know about itself
unless it has the property of self-awareness. Just like in humans
pulse-rate, rate of breathing, temperature, etc. provide an
awareness of an impending illness, similarly a system requires
self-awareness to be able to detect any impending problems
in the system.

Since DAS change their structure and size frequently, a
fixed design-time model may not be enough to achieve self-
awareness. Moreover, even if the system does not change itself
the environment in which the system operates may require the
system to change its behavior. In both cases the system has to
adapt itself. This adaptability is not possible unless the system
not only is self-aware but is also aware of its environment.

To this end, self-aware and self-composing modeling frame-
works for runtime modeling are needed. In this paper we have
used a mathematical modeling technique i.e. linear program-
ming to develop a runtime model of the system to achieve

this goal. This paper uses model-driven engineering based
on runtime modeling for self-optimization. Specifically, our
modeling framework makes the following contributions:

First, our framework is based on industrial strength op-
erations research technique i.e. linear programming that has
the capacity to handle hundreds and thousands of decision
variables, thus it is an ideal candidate for modeling DAS.
But traditionally linear programming models are constructed
at design time. Thus, as our second contribution, we have
developed a runtime model composer for linear programming
that generates a runtime model of the system and its envi-
ronment instantaneously. Our third contribution is that the
runtime model is used to carry out optimizations in the system
automatically using mathematical manipulations, thus making
the system self-optimizing.

II. MOTIVATION: POWER CONSERVATION IN SMART GRID

In this section, we introduce a motivating example that
requires dynamic model generation for self-optimization. We
also use this running example during the rest of the paper to
illustrate our approach.

Power conservation has been an important issue for many
decades now. The scarcity of the energy sources and the
investment needed to setup new power sources has been
pushing up the cost of power. Even today power rationing is
being enforced in countries where power demand is growing
much faster than the growth in the production capacity. In this
scenario the research community is working hard to find the
solutions to find new inexpensive and renewable sources of
power. Additionally, another research effort is to conserve the
existing sources of power as much as possible.

Within the scope of power conservation, our previous work
has focused on reducing the demand for power while maintain-
ing a service-level guarantee for the subscribers [14]. On one
hand this means adequate power availability to the consumers
and on the other hand this means lower power prices for power
generation companies.

Specifically, we have focused on managing power to devices
of higher consumption. Our hypothesis is that if we can
micro-manage power to the most power consuming devices



such as heating and cooling units then we are able to save
the maximum energy. To satisfy the needs of the users, in
this approach there are service-level guarantee for power
availability . This service-level guarantee allows the user to
use the power at specific time schedules that is provided by
the power company.

In such a system where there are hundreds of thousands
of high powered devices, without a runtime model of the
system managing the service-level guarantee is a huge problem
. Moreover, the number of devices that are available at a
certain time may fluctuate. Therefore, modeling such a system
at design time is almost impossible.

In this paper, we propose a runtime modeling framework
that provides us with an instantaneous runtime model of the
system. This instantaneous model is created by converting the
raw-data from the system to a mathematical model, i.e. linear
programming model, of the system. Through this mathematical
model that is generated at runtime, we are able to conserve
power as well as fulfill all the service-level guarantee for the
users.

At this time it is appropriate to discuss other research efforts
related to this work.

III. RELATED WORK

The related work can be characterized into three separate
categories.

First, is the related work in the field of modeling runtime
systems. There are various modeling approaches for instan-
taneous representation of a system. Various runtime models
are proposed for various purposes. For instance, the focus of
modeling in the runtime modeling community has been on
capturing architectural or operational modeling of a system
and representing it in a common format such as UML or
XML. In this regard, Kuhn and Verwaest developed a polyglot
library for modeling a computing system at runtime [16]. This
runtime model generates and annotates a UML diagram for
architectural view at runtime. Combemale and colleagues have
designed a modeling framework using a markup language for
autonomic transformations of system [3]. Their system uses an
XML derived language to implement model based-adaptation.
Sanchez and colleagues and Cetina and colleagues have used
extensions of UML for similar purpose [2],[23].

In general, these modeling at runtime techniques are geared
towards extracting a model from an existing system in UML
or XML formant and then transforming the system based on
Model Driven Engineering (MDE). The goal of our research
is similar in that we need a runtime model of the system.
However, we would also like to manipulate the model to
achieve self-optimization. Although our current work focuses
on extracting a model and representing it in mathematical
form, One possible future direction of our work could be to
transform UML or XML format into a mathematical model.

In this context an interesting work was proposed by Dobson
and colleagues [4]. In this work the authors explored the
idea of modeling the system as a whole. In our system we
follow a similar paradigm where we model the observed nd

the controlling parameters in a mathematical model to achieve
the desired adaptation.

The second category of related work is the existing work on
optimization of self-managing systems. This work can further
be divided into two broad categories: Top-down modeling and
bottom-up modeling: In top-down modeling, a global model
of the system is composed by modeling the individual artifacts
of the system. For example, Zhu and colleagues and Gounaris
and colleagues optimized systems on the global model of
the system where the model artifacts were aggregations of
individual components such as demand and supply [26], [8].
Optimization have used linear programming, such as our
previous work and works of Femal and Freeh [12], [5], control
theory by Lefurgy and colleagues and Wang and colleges [17],
[24] and game theory by Khargharia and colleagues [15] for
their global level optimization. However, all these methods are
for fixed sized systems and do not provide the ability for the
model to grow or shrink at runtime.

Bottom-up techniques, in this context are more suitable.
Optimization for wireless sensor networks using learning has
been proposed by Shah and Kumar[22] as well as by Mainland
and colleagues [18]. Lefurgy and colleagues and Nathuji and
colleagues have optimized individual server power load using
control theory [17], [19]. However, not all problems have
the property of sub-problem optimality. For problems which
involve planning over a period of time, a holistic view of
the entire system is needed to ascertain the optimal solution.
In essence any problem for which greedy algorithm is not
suitable, for similar reasons bottom-up technique will not be
optimal either.

The third category of related work are the approaches to
conserve power in large scale systems. Optimizing computing
system for power conservation has been done since long.
However, we would like to state here that our work is NOT
optimization of power systems in the traditional way. In
traditional power supply optimization the engineering aspect
of power and its distribution is taken into account. But in our
work we are managing the power devices that make up the
smart grid.

The closest work in optimization of power using end user
devices is optimization of power dispatches and similar issues
by Wang and colleagues [25]. This work provides a method
to optimize power dispatches. However, the method is still far
from optimizing device usage. The optimization uses a fixed
model of system as in this specific problem the number of
variables in the target system do not vary.

Few researchers have successfully optimized large scale
power systems. However, their assumptions for their target
systems do not hold for power distribution grids. Femal and
Freeh [5] optimized power using linear programming for a
data-center. However, for their model number of devices had
to be known at design time.

A more related work is by Hlavacs and colleagues [9]. How-
ever, their aim of optimization was to manage the optimizing
agent’s power consumption rather than optimizing the system
itself.



Another interesting dimension of runtime modeling of DAS
is work of Goldsby and Cheng [7]. However, the modeling is
focused on handling uncertainty and will not be of direct use
in optimization.

Thus though optimization is a very active field and research
has been done on optimizing a modeled system, but this is one
of the first attempts to model an evolving system, such as a
power grid.

IV. MODELING FRAMEWORK

Traditionally, models created for optimization of systems
are generally expressed as abstract mathematical models.
These models are defined in standard mathematical lexicon.
When a system is to be deployed, its model is realized as
code segments or equation matrices or equation arrays based
on solver being used for optimization. The dimensions of these
matrices and cardinality of variables is usually defined at the
time of deployment and is hard coded in code segments, matrix
dimensions, etc.

In comparison, for systems such as DAS, system dimensions
at the time of deployment are meaningless . This is due to the
fact that it can grow, as well as shrink over time. To handle
such changes, a measure of self-aware modeling integrated
with self-optimization is necessary to manage DAS. This self-
aware optimization can leverage the change in dimensions of
DAS at runtime to attain scalability and performance boost
according to the runtime state of DAS.

Various systems have been optimized through mathematical
models. However, in all of the applications of mathematical
techniques seen so far by the authors, the constraints and
tuning parameters were known when the system was being
implemented [5], [12], [11]. We have not observed any de-
tailed work for engineering a system’s model that exhibited
variability in the size of their constraints and control features.

Therefore in our modeling framework we have used the
abstract mathematical models as a meta-model to create an
on-demand, instantaneous model of system based on system
statistics. In this section we define our modeling framework for
constructing an instantaneous model of a system at runtime.

A. Structure of the Mathematical Meta-Model

In practice mathematical models are developed and ex-
pressed as abstract models. Mathematical models represent a
system in form of decision variables and constraints. Decision
variables are the controlling parameters to change the system
state where as constraints are the limitations of the system.
Since in mathematics, a variable can take any numeric value, it
is important that we specify the limits of our decision variables
as well.

To model a system, the control parameters and limitations of
the system are analyzed. A system can be composed of many
control parameters but usually there exist logical groupings
with which these control parameters can be abstracted into
a single entity or class. Usually this also means that similar
constraints apply on each of the element of the grouping. It
also means that a single abstract equation with appropriate

quantifiers can suffice for containing the behavior of all the
variables within a group. Since these are logical groupings and
resemble a set like structure, we call these variable abstraction
as ontologies of our system. Hence an ontology is a group
of control parameters which have similar logical structure
and are subjected to similar constraints. Like sets, ontologies
can be grouped together to form more inclusive notation.
Mathematically, this means that whereas two different logical
groups of variables, or ontologies are subjected to their own
constraints, it can also have a set of constraints that are
applicable to both the groups. Hence our decision variables can
be part of a multitude of ontologies. Here a subscript define the
specific element within an ontology. We call these grouping
of ontologies as an ontological class. Figure 1 describes the
abstract model that we will discuss in detail here.

Example: Model for a Smart Grid Application
We take the example of modeling the usage of electrical de-
vices in an electric grid. We divide our devices into ontologies
according to their consumption profiles and time periods. Our
task is to maximize the number of machines from each set
which can be kept in "on" state for a particular period in
an hour without violating the service-level guarantee. Here
the number of machines to keep in "on" state in a particular
time period is our tuning parameter or "decision variable". For
each tuning parameter there are two ontologies. First there
are different sets of machines. Each type is represented as a
subscript i. The second attribute is of time, that is which time
period does a specific decision variable represent. These types
are represented as a subscript t. Hence i, and t represent two
ontologies combined in a single decision variable Xi,t.

The system in figure 1 is subjected to three classes of
constraints. Each of these class is represented as a single
abstract equation. Notice that equation 3 is only applicable
to one ontology, the time t while the other two are subjected
to both. For demonstration of our framework we will consider
the example of equation 2 in detail. This equation constraints
the system by enforcing a minimum service level. It states that
for every time period t, the number of machines switched on
in every machine class i should not be less than 1/3rd of the
total number of machines in that class.

During implementation these abstract models are expanded
according to available system statistics. If our system had fixed
machine classes, say 10 and 6 time periods (t) the abstract
equation 2 would have been expanded to 60 equations. Each
of these 60 equations would have represented one specific (t, i)
tuple.

Mathematical models for systems which do not exhibit
change in cardinality from abstract model to implemented
model can be modeled effectively. That is, if we can enumerate
at time of implementation or deployment as to how many
machines we have and how many time segments we have,
then generating an actual model of the system from abstract
model is straight forward.

However, if the cardinality cannot be evaluated at the time
of implementation, then modeling becomes a difficult task. A
naive modeling technique is to consider worst case scenario.



For example, in the sample model above, we limit i, or device
classes, to say 1000 and then make a model for these many
classes.

For a grid level electric distribution network this solution
is not feasible. First, the number of device classes cannot be
predicted. There are new types of machines that are being
added everyday and limiting this growth is not possible.
Second, worst case setup is highly inefficient. By calculating
for a 1000 classes always, we are consuming much more
resources where as in actuality we might need a fraction
of these calculations. Third, because we always assume a
large data-set, the choices for algorithms is limited. There
are algorithms which are more efficient for small to medium
sized data-sets. If we can evaluate and model at runtime, it
is possible to derive a better result by using more accurate
algorithms.

B. Modeling at Runtime

Various techniques exist for creating a runtime model of a
system. These efforts are usually intended for architectural and
operational runtime modeling systems. We observed that these
modeling framework have some commonality in processing
their task. Usually runtime modeling frameworks define a set
of primitive artifacts with defined semantics. At runtime these
artifacts are instantiated and replicated and relationship among
these artifacts is established [21], [7], [16]. There are various
methods to extract information from a system and various uses
of the modeled systems, but this is beyond the scope of runtime
model generation.

The underlying architecture of our framework is similar to
these runtime modelers. The difference is that we use the
components of abstract mathematical models as our primitive
artifacts. Specifically, the abstract mathematical model defined
for the system is used as a meta-model. The primitive artifacts
for us are the ontological classes. When we observe an object,
or a variable, belonging to a specific ontology, we create
a corresponding ontology object for it in our mathematical
model. This process is covered in the modeling of ontologies
step (step 1 defined below).

The equations of our meta-model define the relationships
between different variables. Once we determine the cardinality
of ontological classes, we develop relationships of ontologies
by exploring the equations one by one and setting up the
constraints and limitation of the system in the process. This

Maximize(Z =
∑
i,t

Xi,t) (1)

∀t∀iXi,t ≥ supplyi/3 (2)

∀t
∑
i,t

µiXi,t ≤ supplyi (3)

∀i,tXi,t ≤MAXi (4)

Fig. 1. Hourly planning LP equations

process and production of the complete model is generated in
the modeling phase.

This runtime modeling is three step process. Our framework
first determines the system statistics to define cardinality for
ontologies. In the second step, it determines the cardinality
of relationships and determine the number of equations each
meta-equation will generate. The third step uses the cardi-
nalities to create an instantaneous model. The second and
third steps are closely related and their implementation is also
intertwined. However, since step 2 is platform independent and
step 3 is dependent on the solvers, merging the two steps is
avoided where-ever possible.

The description of the phases is given below.
1) Modeling of Ontologies: Modeling of ontologies is a

two step process. First we pre-process our data to reduce
dimensions of our input data.

An input to our system consists of raw usage data for
devices. In pre-processing we reduce the dimensionality of
raw usage data using a clustering algorithm. The details of this
dimension reduction is discussed in our previous work [14].
This pre-processing is required due to the nature of problem.
In other works such as Femal and Freeh’s use of LP, such
pre-processing will not be required[5]. For such models, direct
evaluation is possible.

Modeling of ontologies determines the cardinality of each
ontological class. In our model, there is only one ontological
class, X . This ontology in turn is composed of two co-
dependent ontologies: time interval, represented by subscript
t and instance of a cluster represented by subscript i. We
consider 6 time intervals for our problem, however, this
interval can also be changed in runtime.

2) Modeling of Relationships: A mathematical model is a
representation of system in terms of inequality and equality
equations. These equations define the constraints and limits of
the system.

Our framework first distinguish between the equality and
inequality equation. Though both are evaluated in the same
way but in construction step, a different matrix is generated
for each of those equation genres.

Our framework in this step uses cardinalities of ontological
classes to expand the quantifiers. Each quantifier expands
some ontological classification. For example, a ∀Xi quantifier
translates to 1 equation for ontology i within the ontological
class X . In addition, the co-efficient and right hand side for
these equations is also determined in this step as constants are
sometimes also associated with a specific instance of ontology.

Similarly, equation 2 has a (∀t∀i) quantifier. Hence this
meta-equation is expanded into i x t equations, since the
equation is created for each (i, t) tuple. The equation states that
the coefficient of (i, t)th decision variable is 1. So for each
new equation expanded for meta-equation 2, the coefficient
for variable Xi,t will be one and all other variables will have
coefficients of zero. The equation states that the right hand side
of this equation will have the constant value of supplyi/3.
The supplyi/3 is the cluster of the set Xi. We determined
this value in step one. Hence for each equation the correct



corresponding value for Xi/3 is placed.
3) Model Construction: A mathematical model can be rep-

resented in different forms. One of the most commonly used
form to represent mathematical models in computing systems
is a matrix form. Since arrays and matrix are realization of the
same phenomenon, we will discuss how we created matrices
from our results from previous steps.

In matrix notation, a series of linear inequality equations
are represented as:

A× x < b

and a series of linear equality constraints as:

Ae× x = be

Here x is a vector representing the variables, b is a vector
for right hand side constants for inequality constraints and be
for right hand side constants for equality constraints. Similarly
A is matrix of coefficients of x for inequality constraints and
Ae for equality constraints. Similar generalizations exist for
non-linear systems but is beyond the scope of this work.

Though both equality and inequality constructs are almost
similar but solvers accepts them in two different set of matri-
ces. We construct both the matrices in similar fashion.

The process of constructing matrices is as follows: We first
determine the matrix x. We use the notion determine because x
is not constructed in matrix form per se. Rather x is considered
as an ordering of decision variables. Decision variables, if we
recall, are the instances of various ontological classes that
we created in step 1. Fixing the order does not change the
execution of algorithm so any convention which completely
covers the ontological class space is sufficient. However, fixing
an order is necessary as this order determines the placement
of coefficients in matrices A and Ae.

Our model has a single ontological class of decision vari-
ables, Xi,t. We fix an order of expanding the two dimensional
space of X by arranging rows before columns. This step fixes
our x vector.

Our framework proceeds with processing our equations
determined in step 2. For each equation a row in matrix A
and one in b is added for an inequality constraint. Similar step
is executed for equality constraint but for matrices Ae and
be. In a newly added row of A, all elements are zero excepts
the ones specified by the equation. The constant values for
coefficient of A and the value in b are placed. This step is
repeated for all the equations which were generated in step 2.
At the end of this The complete matrices A, Ae, b and be are
produced.

C. Running Example

We now describe the construction for a row of equation 2.
Let’s assume that we 50 clusters were created during our pre-
processing and we have 6 time slots. This means that our step
1 will provide us with the value of 300. These are the number
of decision variables that we will have in our system. For our
model generating step, this means that size of x matrix will
be 1× 300 and matrices A and Ae will have 300 columns.

Lets assume that cluster number 10 has 18 elements. So our
equation for second time period from step 2 will look like the
following:

1×X10,2 < 6

Our model construction will construct the following row
for this equation in matrix A.

Column 1..61 col 62 63 .. 300
Value 0..0 1 0..0

In addition, it will add a row in matrix b and put the value
6 in the newly added row.

A complete matrix A thus will have x× t columns and i× t
equations for meta-equation 2, t equations for meta-equation 3
and i×t equations for meta-equation 4 and a solitary equation
for meta-equation 1.

V. EVALUATION

We have designed a framework for modeling of optimization
of large scale power systems. Conservation of power through
optimizing usage of end user devices is a not new concept.
However, to our knowledge very few techniques are available
which are scalable and efficient to achieve this goal. So far the
major work in this field has been performed on fixed sized
systems where the number of devices are known at design
time. The models of systems are before deployment time based
on the largest possible or worst case deployment of system [1],
[6].

Our system engineers the model at runtime instead of
populating the variables of a fixed model. Therefore our eval-
uation, compares the existing modeling methods for similar
smart-grid application with our runtime modeling results. We
claim improved performance using two key matrices; First
our response time is faster than a fixed model. Second, we
claim better efficiency in achieving goal of optimization, i.e.
in distributing power to the consumers.

The aforementioned ’efficiency’ of our electric distribution
is the unutilized power (UP) in the system that an optimization
is unable to distribute amongst the electric devices. The
details of why such unutilized power exists is discussed in
our previous work [14]. We would like to state here that
the increased efficiency in our example system is because
we modeled it in a way so that a decrease in model size
will increase efficiency. Thus our results of efficiency are
applicable when the system can be and is modeled in a way
which relates the efficiency with size of model.

Our evaluation thus evaluates the following hypothesis:
Does modeling at runtime for a system that varies its size
and structure results in benefits in terms of time or efficiency.
In order to test this hypothesis we used two sets of real data
collected from two different sources.

We conduct our evaluation on two different sets of actual
data readings. This is because of two reasons: First, con-
sumption data of individual users for a city is not readily



available. Second, this split analysis proves applicability of
our framework for systems both large and small.

Our first set is a small but detailed study of household
energy use in Sollentuna, Sweden performed over the course
of two years. Experiments on this data is used to show a
correlation between total consumption, time to calculate and
the number of users. Our second experiment is on a data from
the state of California, USA. In this experiment we apply our
modeling framework on large scale set of data and we see the
benefits in terms of efficiency.

A. Evaluation Setup

For our evaluations we used a shared 2.4 G.Hz. Pentium
Core 2 Duo processor with total of 2.00 GB of RAM. The
mathematical solvers used Matlab’s optimization toolbox.

B. Evaluation Data Details

Our first experiment uses hourly consumption data from
approximately 700 houses collected in Sollentuna, Sweden for
the year 2005-2006. Through this experiment we validated the
following

• There exists a strong correlation between the time taken
for optimization by dynamic modeler and the consump-
tion of energy.

• There is a weak correlation between a fixed model
optimization and consumption of energy.

• there exists a strong correlation between total demand for
energy and the number of consumer clusters.

Whereas the first two claims support the case for dynamic
modeling, the last claim helps us construct a more powerful
scenario for validating the scalability and applicability of our
modeling framework.

Our modeling framework can model and optimize systems
which vary in size. The real benefit of the system is attained
when the variation in size is considerable and the scale of
optimization is large. Since a small scale LP optimization in
itself takes insignificant time. To test our framework for a
large scale realistic system we use data published by CAISO.
This data consists of daily usage of electricity in state of
California, USA. A sample of this data is provided in figure
2. However, this data is incomplete for our modeling since
we require the usage pattern of individual users and not
just the total consumption of the system. To overcome this
problem, we artificially constructed the clusters of users based
on total consumption by dividing the total consumption over
in a Gaussian distribution. Gaussian distribution was used
because it was the most appropriate and simple distribution
to represent the natural behavior of large number of users.
Though the distribution of load has a minor impact on the
overall performance. We still consider it as part of our future
work to model and evaluate the system with different distri-
butions. To validate this distribution further, we used results
from our first experiment set. Even though, intuitively it makes
sense that increased consumption means increase in number
of consumers. We still base our argument for constructing the

usage patterns for individual users based on the correlation
found between consumption and users in our first experiment.

Fig. 2. Consumption profile of California for a day as published by CAISO
(Consumption in MWh)

In the following sections we define the standard modeler,
the modeler simulating the prevalent modeling methods in
smart-grid literature, and our dynamic modeler using the
aforementioned sets of data. The first set of data will validate
the correlations and the second set will validate the scalability
and efficiency of our framework in a large scale environment.

C. Standard Modeler
Smart-grid techniques which focus on global optimizations

such as in [1], [10], [11], and [25] build models for the worst
case scenario. Without a runtime modeling framework this
is necessary because updating the system model manually at
runtime is not possible.

For a system such as our micro-management application
for smart-grids, a model using the standard method means
constructing a model for the worst possible day throughout the
life cycle of the system. Instead of simulating this scenario,
we only consider the cluster configuration for the worst hour
of the day we conducted our experiments on. Note that this is
not the worst case or largest configuration for the system life
cycle. However, this provides sufficient comparison since our
technique has proven itself to be faster. We use the number of
clusters as the metrics here because the size of the model is
dependent upon the number of clusters for each hour. We used
standard k-means clustering on the input data where k is worst-
case clustering size for the day. These k clusters and their
frequencies populate the fixed input matrix for the optimizer.

D. Evaluation Results
1) Swedish Household Consumption Data: Our first ex-

periment uses the data collected from Sollentuna, Sweden.
The data consists of consumption of electricity in a suburb
of Sollentuna collected at an interval of 1 hour. We use
these consumption profiles as input for both our dynamic
modeling framework and the standard modeler. We conducted
the experiments multiple times and considered the mean of
runs to deal with operating system related noise in response
time. This is because the response time for the small data-set
is small enough to be affected by background processes of the
operating system.



The execution time for the dynamic modeler, standard
modeler, and the total demand of the system is shown in
figure 3. Here the line with square points represent the time
for standard modeler in seconds, the line with diamond points
represent the response time of dynamic modeler and and the
line with square points represent the total energy demand in
MWh. As it can be observed, there is a correlation between
the demand and the response time for the dynamic modeler.
The correlation coefficient for these observations is 0.75 using
Pearson method. On the other hand, the relation between
response time of standard modeler and demand comes out as
week inverse, -0.3 using Pearson method. This validates our
first two claim that the strong correlation exists between time
taken by dynamic solver and the total demand of the system
and that a fixed size modeler is not able to benefit from the
change in demand.

Our third claim is explained through the graph in figure
4. Here the dotted line represents the total demand for each
hour, the line with square points represents the number of users
and the strong line with triangle points represents the cluster
count. Here we can see the relation between the number of
consumption clusters and the total consumption. We see that a
strong correlation exists between the number of and the total
consumption using Pearson method (0.83).

We can thus conclude from this experiment that a strong
correlation exists between the consumption, number of users
and time taken by the dynamic modeler. Furthermore, no
correlation was observed between the standard modeler and
total consumption.

Fig. 3. Response time for dynamic and standard modeler in comparison to
demand. (Response time in seconds)

2) CAISO Data: Our second evaluation compares our
modeling framework with the standard modeling method on
the criterion of running time and efficiency if we were to
distribute electricity in state of California using our method.
We evaluated our system by running both systems on data of
24 hours from a power distributor’s profile.

We observed that our framework’s execution time was con-
siderably less in comparison to the standard modeler. Figure
5 plots our framework time and standard modeler time. Here
the squares represent the time in seconds the standard modeler
required to model and optimize the data for that specific time

Fig. 4. Comparison between demand, clusters and active users for 24 hour
period as observed in Sollentuna, Sweden

Fig. 5. Solver time for 24 hours CAISO data. (Response time in seconds)

period and diamonds represent the time in seconds for our
runtime framework. It can be observed that runtime modeling
time is considerably faster throughout, except for two cases,
in the 6th and the 21st periods. These are the cases where
the size of runtime model was maximum and both the models
were of similar size. We witnessed at an average 56% better
response time than the standard system.

Our second evaluation goal was to achieve better per-
formance. Figure 6 plots the power allocated by runtime
framework and by standard modeler. Here diamonds represent
the runtime framework allocation of power in megawatts and
squares represent the standard modeler results . We observed
a marginal improvement in allocation of power. Total increase
in power allocation was close to 2% which is significant for
a large scale system.

Our results show that our runtime modeling framework is
faster than a static modeling method. Our runtime modeler is
approximately 50% faster than the standard modeler. Further-
more, we observed that we can achieve better performance
for our specific model through the use of dynamic runtime
modeling

VI. FUTURE DIMENSIONS OF RUNTIME MODELING

Dynamic modeling intuitively leads to an efficient of op-
timization. Since the model only consists of variables and



Fig. 7. System Flow [13]

Fig. 6. Solver efficiency for 24 hours CAISO data. (Power allocation in
Kilo-Watts)

constraints that are applicable at that instance, a more stream-
lined and concise model is constructed resulting in faster
optimization and better results.

However, engineering a model dynamically is a powerful
tool when seen in the context of adaptable optimizations
and this is worth further discussion. Our dynamic modeling
framework, is an extension of our previous work known
as AdOpt technique [13]. In AdOpt, as shown in figure 7,
based on the input parameters we select one of the many
optimizers available, create a model for that optimizer at
runtime and build a plan for execution. AdOpt uses a fixed
set of ontologies which are more or less pre-defined, with
homogenous consumption patterns.

From the study of application of smart grid, cloud comput-
ing and other fields where adaptable behavior is anticipated
in future systems, we see that this rigidity of structure will
not be guaranteed in our future systems. We have seen
optimization applications of smart-grid such as applications
for Plug-In Hybrid Electric Vehicles (PHEVs) [6] where the
demand pattern of the users is an evolving phenomenon.
From modeling perspective this means that the relationships
and constraints for the system will be described at runtime.

Even more appropriate comparison is the work of Ogston and
colleagues who define an adaptive clustering method to group
together various devices [20]. The technique is scalable for
clustering devices in a city and the resulting clusters, their
patterns, frequencies and shape will emerge at runtime. If we
are to use this data to manage these devices then runtime
engineering of model that considering the new clusters and
patterns will be necessary.

Our modeling framework provides the basis for engineering
models for such techniques of the future. Although our existing
work caters for LP. However, the three step engineering pro-
cess described in section IV-B for creating models is more or
less same for modeling non-linear, integer and some heuristic
optimizations. Our work not only provide solution for the
smart grid problem but also provides a foundation for future
dynamic modeling for these modeling techniques.

Our current framework is a proof of concept and requires
engineering to integrate a meta-model into our framework. In
our future work we look at ways to bridge this gap. We are
working on evolving a method to define mathematical abstract
models in a language which our framework can understand
and create a meta-model from. To this end we are evaluating
various modeling languages and are planning on including a
translation engine which will translate abstract mathematical
equations into a meta-model. Such work will streamline inte-
gration of our framework with existing optimization platforms.

Our second direction is looking at ways of determining
constraints from system statistics. In our current framework,
system cardinality of system constraints are determined solely
by the cardinality of quantifiers. However, systems which can
"sense" constraints through statistical analysis can produce
much more powerful modelers.

Our third direction of interest is integration of our frame-
work and optimizers with physical infrastructure and imple-
ment optimization of resources. A running system of this sorts
will be of real benefit to society.



VII. CONCLUSION

Modeling methods for planning conservation for large scale
systems are very few. Whereas the dimensions of a power
supply grid change frequently, optimization models that can
adapt accordingly are fewer. In this work we have proposed a
framework which can self-adapt to the scale of the problem.
This self-adaptation is done by expanding meta-models at
runtime to develop an instantaneous model of the system.
The expanded model is represented in a matrix form for use
for various optimization toolboxes which are available in the
market.

The advantages of our method is the increase in scalability
and efficiency and the low learning curve to adapt our model
into an existing optimizing engine. We base these claims
on following reasons. First, because we make the model at
runtime, we can scale up as the situation demand. We can also
scale down and increase our efficiency. Second, we use the
abstract model made to define the system for our framework.
Since a basic model is a need for any optimization, there is
no additional training or learning required to make any model
adapt to our framework.

In conclusion, we have defined a framework to develop an
instantaneous model of a system at runtime. This system can
be used by large scale systems which change their structure
at runtime. Example of these systems can be managing of end
users devices within an electric power grid. The framework
adapts the optimization model according to statistics of the
system. Our evaluation results show that this adaptation aids
in optimization and reduces the time of optimization by 56%.
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